Toggle navigation
Repositorio Institucional
CONICET Digital
Inicio
EXPLORAR
AUTORES
DISCIPLINAS
COMUNIDADES
Estadísticas
Novedades
Noticias
Boletines
Ayuda
General
Datos de investigación
Acerca de
CONICET Digital
Equipo
Red Federal
Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
Andreatta, Massimo
PRODUCCION CIENTÍFICO TECNOLÓGICA
Mostrando ítems 1-19 de 19
Artículo
Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification
Andreatta, Massimo
;
Karosiene, Edita
;
Rasmussen, Michael
;
Stryhn, Anette
;
Buus, Søren
;
Nielsen, Morten
(
Springer
,
2015-09
)
Artículo
An automated benchmarking platform for MHC class II binding prediction methods
Andreatta, Massimo
;
Trolle, Thomas
;
Yan, Zhen
;
Greenbaum, Jason A
;
Peters, Bjoern
;
Nielsen, Morten
(
Oxford University Press
,
2018-05
)
Artículo
Bioinformatics tools for the prediction of T-cell epitopes
Andreatta, Massimo
;
Nielsen, Morten
(
Springer
,
2018-05
)
Artículo
Computational Tools for the Identification and Interpretation of Sequence Motifs in Immunopeptidomes
Alvarez, Bruno
;
Barra, Carolina M.
;
Nielsen, Morten
;
Andreatta, Massimo
(
Wiley VCH Verlag
,
2018-06
)
Artículo
Footprints of antigen processing boost MHC class II natural ligand predictions
Barra, Carolina M.
;
Alvarez, Bruno
;
Paul, Sinu
;
Sette, Alessandro
;
Peters, Bjoern
;
Andreatta, Massimo
;
Buus, Søren
;
Nielsen, Morten
(
Springer Nature
,
2018-11
)
Artículo
Gapped sequence alignment using artificial neural networks: Application to the MHC class I system
Andreatta, Massimo
;
Nielsen, Morten
(
Oxford University Press
,
2016-02-15
)
Artículo
GibbsCluster: unsupervised clustering and alignment of peptide sequences
Andreatta, Massimo
;
Alvarez, Bruno
;
Nielsen, Morten
(
Oxford University Press
,
2017-04
)
Artículo
IEDB-AR: immune epitope database - analysis resource in 2019
Dhanda, Sandeep Kumar
;
Mahajan, Swapnil
;
Paul, Sinu
;
Yan, Zhen
;
Kim, Haeuk
;
Jespersen, Martin Closter
;
Jurtz, Vanessa
;
Andreatta, Massimo
;
Greenbaum, Jason A
;
Marcatili, Paolo
;
Sette, Alessandro
;
Nielsen, Morten
;
Peters, Bjoern
(
Oxford University Press
,
2019-07-02
)
Artículo
Immunoinformatics: Predicting Peptide–MHC Binding
Nielsen, Morten
;
Andreatta, Massimo
;
Peters, Bjoern
;
Buus, Søren
(
Annual Review
,
2020-07
)
Artículo
Improved methods for predicting peptide binding affinity to MHC class II molecules
Jensen, Kamilla Kjærgaard
;
Andreatta, Massimo
;
Marcatili, Paolo
;
Buus, Søren
;
Greenbaum, Jason A.
;
Yan, Zhen
;
Sette, Alessandro
;
Peters, Bjoern
;
Nielsen, Morten
(
Wiley Blackwell Publishing, Inc
,
2018-07
)
Artículo
Machine learning reveals a non‐canonical mode of peptide binding to MHC class II molecules
Andreatta, Massimo
;
Jurtz, Vanessa I.
;
Kaever, Thomas
;
Sette, Alessandro
;
Peters, Bjoern
;
Nielsen, Morten
(
Wiley Blackwell Publishing, Inc
,
2017-10
)
Artículo
MS-Rescue: A Computational Pipeline to Increase the Quality and Yield of Immunopeptidomics Experiments
Andreatta, Massimo
;
Nicastri, Annalisa
;
Peng, Xu
;
Hancock, Gemma
;
Dorrell, Lucy
;
Ternette, Nicola
;
Nielsen, Morten
(
Wiley VCH Verlag
,
2019-02
)
Artículo
NetH2pan: A computational tool to guide MHC peptide prediction on murine tumors
DeVette, Christa I.
;
Andreatta, Massimo
;
Bardet, Wilfried
;
Cate, Steven J.
;
Jurtz, Vanessa I.
;
Jackson, Kenneth W.
;
Welm, Alana L.
;
Nielsen, Morten
;
Hildebrand, William H.
(
American Association for Cancer Research
,
2018-06
)
Artículo
NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length data sets
Nielsen, Morten
;
Andreatta, Massimo
(
BioMed Central
,
2016-03
)
Artículo
Netmhcpan-4.0: Improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
Jurtz, Vanessa
;
Paul, Sinu
;
Andreatta, Massimo
;
Marcatili, Paolo
;
Peters, Bjoern
;
Nielsen, Morten
(
American Association of Immunologists
,
2017-11
)
Artículo
NNAlign-MA; MHC peptidome deconvolution for accurate MHC binding motif characterization and improved t-cell epitope predictions
Alvarez, Bruno
;
Reynisson, Birkir
;
Barra, Carolina M
;
Buus, Søren
;
Ternette, Nicola
;
Connelley, Tim
;
Andreatta, Massimo
;
Nielsen, Morten
(
American Society for Biochemistry and Molecular Biology
,
2019-10
)
Artículo
NNAlign: a platform to construct and evaluate artificial neural network models of receptor–ligand interactions
Nielsen, Morten
;
Andreatta, Massimo
(
Oxford University Press
,
2017-04
)
Artículo
Predicting HLA CD4 immunogenicity in human populations
Dhanda, Sandeep Kumar
;
Karosiene, Edita
;
Edwards, Lindy
;
Grifoni, Alba
;
Paul, Sinu
;
Andreatta, Massimo
;
Weiskopf, Daniela
;
Sidney, John
;
Nielsen, Morten
;
Peters, Bjoern
;
Sette, Alessandro
(
Frontiers Media S.A.
,
2018-06
)
Artículo
Unconventional peptide presentation by major histocompatibility complex (MHC) class i allele HLA-A∗02:01: Breaking confinement
Remesh, Soumya G.
;
Andreatta, Massimo
;
Ying, Ge
;
Kaever, Thomas
;
Nielsen, Morten
;
McMurtrey, Curtis
;
Hildebrand, William
;
Peters, Bjoern
;
Zajonc, Dirk M.
(
American Society for Biochemistry and Molecular Biology
,
2017-03
)
Mostrando ítems 1-19 de 19