Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length data sets

Nielsen, MortenIcon ; Andreatta, MassimoIcon
Fecha de publicación: 03/2016
Editorial: BioMed Central
Revista: Genome Medicine
ISSN: 1756-994X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Binding of peptides to MHC class I molecules (MHC-I) is essential for antigen presentation to cytotoxic T-cells.Here, we demonstrate how a simple alignment step allowing insertions and deletions in a pan-specific MHC-I binding machine-learning model enables combining information across both multiple MHC molecules and peptide lengths. This pan-allele/pan-length algorithm significantly outperforms state-of-the-art methods, and captures differences in the length profile of binders to different MHC molecules leading to increased accuracy for ligand identification. Using this model, we demonstrate that percentile ranks in contrast to affinity-based thresholds are optimal for ligand identification due to uniform sampling of the MHC space.We have developed a neural network-based machine-learning algorithm leveraging information across multiple receptor specificities and ligand length scales, and demonstrated how this approach significantly improves the accuracy for prediction of peptide binding and identification of MHC ligands. The method is available at www.​cbs.​dtu.​dk/​services/​NetMHCpan-3.​0.
Palabras clave: MHC class I , Binding prediction , Insertions , Deletions , Gapped sequence alignment , Epitope discovery
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 542.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/181399
URL: https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-016-0288-x
DOI: http://dx.doi.org/10.1186/s13073-016-0288-x
Colecciones
Articulos(IIB-INTECH)
Articulos de INST.DE INVEST.BIOTECNOLOGICAS - INSTITUTO TECNOLOGICO CHASCOMUS
Citación
Nielsen, Morten; Andreatta, Massimo; NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length data sets; BioMed Central; Genome Medicine; 8; 33; 3-2016; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES