Artículo
Computational Tools for the Identification and Interpretation of Sequence Motifs in Immunopeptidomes
Fecha de publicación:
06/2018
Editorial:
Wiley VCH Verlag
Revista:
Proteomics (weinheim. Print)
ISSN:
1615-9853
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Recent advances in proteomics and mass‐spectrometry have widely expanded the detectable peptide repertoire presented by major histocompatibility complex (MHC) molecules on the cell surface, collectively known as the immunopeptidome. Finely characterizing the immunopeptidome brings about important basic insights into the mechanisms of antigen presentation, but can also reveal promising targets for vaccine development and cancer immunotherapy. This report describes a number of practical and efficient approaches to analyze immunopeptidomics data, discussing the identification of meaningful sequence motifs in various scenarios and considering current limitations. Guidelines are provided for the filtering of false hits and contaminants, and to address the problem of motif deconvolution in cell lines expressing multiple MHC alleles, both for the MHC class I and class II systems. Finally, it is demonstrated how machine learning can be readily employed by non‐expert users to generate accurate prediction models directly from mass‐spectrometry eluted ligand data sets.
Palabras clave:
GIBBSCLUSTER
,
MASS SPECTROMETRY
,
MHC
,
PREDICTION MODELS
,
SEQUENCE MOTIFS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIB-INTECH)
Articulos de INST.DE INVEST.BIOTECNOLOGICAS - INSTITUTO TECNOLOGICO CHASCOMUS
Articulos de INST.DE INVEST.BIOTECNOLOGICAS - INSTITUTO TECNOLOGICO CHASCOMUS
Citación
Alvarez, Bruno; Barra, Carolina M.; Nielsen, Morten; Andreatta, Massimo; Computational Tools for the Identification and Interpretation of Sequence Motifs in Immunopeptidomes; Wiley VCH Verlag; Proteomics (weinheim. Print); 18; 12; 6-2018; 1-10
Compartir
Altmétricas