Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

MS-Rescue: A Computational Pipeline to Increase the Quality and Yield of Immunopeptidomics Experiments

Andreatta, MassimoIcon ; Nicastri, Annalisa; Peng, Xu; Hancock, Gemma; Dorrell, Lucy; Ternette, Nicola; Nielsen, MortenIcon
Fecha de publicación: 02/2019
Editorial: Wiley VCH Verlag
Revista: Proteomics (weinheim. Print)
ISSN: 1615-9853
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Salud

Resumen

LC–MS/MS has become the standard platform for the characterization of immunopeptidomes, the collection of peptides naturally presented by major histocompatibility complex molecules to the cell surface. The protocols and algorithms used for immunopeptidomics data analysis are based on tools developed for traditional bottom-up proteomics that address the identification of peptides generated by tryptic digestion. Such algorithms are generally not tailored to the specific requirements of MHC ligand identification and, as a consequence, immunopeptidomics datasets suffer from dismissal of informative spectral information and high false discovery rates. Here, a new pipeline for the refinement of peptide-spectrum matches (PSM) is proposed, based on the assumption that immunopeptidomes contain a limited number of recurring peptide motifs, corresponding to MHC specificities. Sequence motifs are learned directly from the individual peptidome by training a prediction model on high-confidence PSMs. The model is then applied to PSM candidates with lower confidence, and sequences that score significantly higher than random peptides are rescued as likely true ligands. The pipeline is applied to MHC class I immunopeptidomes from three different species, and it is shown that it can increase the number of identified ligands by up to 20–30%, while effectively removing false positives and products of co-precipitation. Spectral validation using synthetic peptides confirms the identity of a large proportion of rescued ligands in the experimental peptidome.
Palabras clave: MACHINE LEARNING , MASS SPECTROMETRY , MHC , PEPTIDOME , SEQUENCE MOTIFS
Ver el registro completo
 
Archivos asociados
Tamaño: 467.9Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/124583
DOI: http://dx.doi.org/10.1002/pmic.201800357
Colecciones
Articulos (IIBIO)
Articulos de INSTITUTO DE INVESTIGACIONES BIOTECNOLOGICAS
Citación
Andreatta, Massimo; Nicastri, Annalisa; Peng, Xu; Hancock, Gemma; Dorrell, Lucy; et al.; MS-Rescue: A Computational Pipeline to Increase the Quality and Yield of Immunopeptidomics Experiments; Wiley VCH Verlag; Proteomics (weinheim. Print); 19; 4; 2-2019; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES