Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Stepwise strategy based on untargeted metabolomic 1H NMR fingerprinting and pattern recognition for the geographical authentication of virgin olive oils

Alonso Salces, Rosa MariaIcon ; Viacava, Gabriela ElenaIcon ; Tres, Alba; Vichi, Stefania; Valli, Enrico; Bendini, Alessandra; Gallina Toschi, Tullia; Gallo, Blanca; Berrueta, Luis Ángel; Héberger, Károly
Fecha de publicación: 07/2025
Editorial: Elsevier
Revista: Food Control
ISSN: 0956-7135
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

1H NMR fingerprinting of virgin olive oils (VOOs) and a collection of binary classificationmodels arranged in a decision tree are presented as a stepwise strategy to determine thegeographical origin of a VOO at four levels, i.e. provenance from an EU member state oroutside the EU, country and region of origin, and compliance with a geographicalindication scheme. This approach supports current EU regulation that makes labelling ofthe geographical origin mandatory for olive oil. Currently, official methods for its controlare still lacking. Partial least squares discriminant analysis (PLS-DA) and random forestfor classification afforded robust and stable binary classification models to verify thegeographical origin of VOOs; however, the former outperformed the latter in terms ofaccuracy and robustness. The prediction abilities of the best binary PLS-DA model foreach case study were between 80% and 100% for both classes in cross-validation and inexternal validation. The satisfactory results achieved for the verification of thegeographical origin of VOOs, together with those of our previous studies on thediscrimination of olive oil categories, the detection of olive oils blended with vegetableoils (Alonso-Salces et al., 2022), and the determination of the stability, freshness, storagetime and conditions, and olive oil best−before date (Alonso-Salces et al., 2021), confirmthat a single H NMR analysis of an olive oil sample can provide useful information tocontrol several EU regulations related to olive oil marketing standards (Regulation (EU)2022/2104 and Regulation (EU) 2024/1143).
Palabras clave: CHEMOMETRICS , DECISION TREE , GEOGRAPHICAL ORIGIN , MULTIVARIATE DATA ANALYSIS , OLIVE OIL , PROTON NUCLEAR MAGNETIC RESONANCE
Ver el registro completo
 
Archivos asociados
Tamaño: 2.823Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/272628
URL: https://linkinghub.elsevier.com/retrieve/pii/S0956713525000854
DOI: http://dx.doi.org//10.1016/j.foodcont.2025.111216
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Alonso Salces, Rosa Maria; Viacava, Gabriela Elena; Tres, Alba; Vichi, Stefania; Valli, Enrico; et al.; Stepwise strategy based on untargeted metabolomic 1H NMR fingerprinting and pattern recognition for the geographical authentication of virgin olive oils; Elsevier; Food Control; 173; 7-2025; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES