Mostrar el registro sencillo del ítem

dc.contributor.author
Alonso Salces, Rosa Maria  
dc.contributor.author
Viacava, Gabriela Elena  
dc.contributor.author
Tres, Alba  
dc.contributor.author
Vichi, Stefania  
dc.contributor.author
Valli, Enrico  
dc.contributor.author
Bendini, Alessandra  
dc.contributor.author
Gallina Toschi, Tullia  
dc.contributor.author
Gallo, Blanca  
dc.contributor.author
Berrueta, Luis Ángel  
dc.contributor.author
Héberger, Károly  
dc.date.available
2025-10-02T14:07:52Z  
dc.date.issued
2025-07  
dc.identifier.citation
Alonso Salces, Rosa Maria; Viacava, Gabriela Elena; Tres, Alba; Vichi, Stefania; Valli, Enrico; et al.; Stepwise strategy based on untargeted metabolomic 1H NMR fingerprinting and pattern recognition for the geographical authentication of virgin olive oils; Elsevier; Food Control; 173; 7-2025; 1-11  
dc.identifier.issn
0956-7135  
dc.identifier.uri
http://hdl.handle.net/11336/272628  
dc.description.abstract
1H NMR fingerprinting of virgin olive oils (VOOs) and a collection of binary classificationmodels arranged in a decision tree are presented as a stepwise strategy to determine thegeographical origin of a VOO at four levels, i.e. provenance from an EU member state oroutside the EU, country and region of origin, and compliance with a geographicalindication scheme. This approach supports current EU regulation that makes labelling ofthe geographical origin mandatory for olive oil. Currently, official methods for its controlare still lacking. Partial least squares discriminant analysis (PLS-DA) and random forestfor classification afforded robust and stable binary classification models to verify thegeographical origin of VOOs; however, the former outperformed the latter in terms ofaccuracy and robustness. The prediction abilities of the best binary PLS-DA model foreach case study were between 80% and 100% for both classes in cross-validation and inexternal validation. The satisfactory results achieved for the verification of thegeographical origin of VOOs, together with those of our previous studies on thediscrimination of olive oil categories, the detection of olive oils blended with vegetableoils (Alonso-Salces et al., 2022), and the determination of the stability, freshness, storagetime and conditions, and olive oil best−before date (Alonso-Salces et al., 2021), confirmthat a single H NMR analysis of an olive oil sample can provide useful information tocontrol several EU regulations related to olive oil marketing standards (Regulation (EU)2022/2104 and Regulation (EU) 2024/1143).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CHEMOMETRICS  
dc.subject
DECISION TREE  
dc.subject
GEOGRAPHICAL ORIGIN  
dc.subject
MULTIVARIATE DATA ANALYSIS  
dc.subject
OLIVE OIL  
dc.subject
PROTON NUCLEAR MAGNETIC RESONANCE  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Stepwise strategy based on untargeted metabolomic 1H NMR fingerprinting and pattern recognition for the geographical authentication of virgin olive oils  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-09-29T13:24:53Z  
dc.journal.volume
173  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Alonso Salces, Rosa Maria. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Sociales. Departamento de Arqueología. Laboratorio de Ecología Evolutiva Humana (Sede Quequén); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.description.fil
Fil: Viacava, Gabriela Elena. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Ingeniería en Alimentos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina  
dc.description.fil
Fil: Tres, Alba. Universidad de Barcelona; España  
dc.description.fil
Fil: Vichi, Stefania. Universidad de Barcelona; España  
dc.description.fil
Fil: Valli, Enrico. Università di Bologna; Italia  
dc.description.fil
Fil: Bendini, Alessandra. Università di Bologna; Italia  
dc.description.fil
Fil: Gallina Toschi, Tullia. Università di Bologna; Italia  
dc.description.fil
Fil: Gallo, Blanca. Universidad del País Vasco; España  
dc.description.fil
Fil: Berrueta, Luis Ángel. Universidad del País Vasco; España  
dc.description.fil
Fil: Héberger, Károly. Hungarian Academy Of Sciences; Hungría  
dc.journal.title
Food Control  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0956713525000854  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org//10.1016/j.foodcont.2025.111216