Artículo
Hybrid vision-based navigation for mobile robots in mixed indoor/outdoor environments
de Cristóforis, Pablo
; Nitsche, Matias Alejandro
; Krajník, Tomáš; Pire, Taihú Aguará Nahuel
; Mejail, Marta Estela
Fecha de publicación:
02/2015
Editorial:
Elsevier Science
Revista:
Pattern Recognition Letters
ISSN:
0167-8655
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we present a vision-based navigation system for mobile robots equipped with a single, off-the-shelf camera in mixed indoor/outdoor environments. A hybrid approach is proposed, based on the teach-and-replay technique, which combines a path-following and a feature-based navigation algorithm. We describe the navigation algorithms and show that both of them correct the robot's lateral displacement from the intended path. After that, we claim that even though neither of the methods explicitly estimates the robot position, the heading corrections themselves keep the robot position error bound. We show that combination of the methods outperforms the pure feature-based approach in terms of localization precision and that this combination reduces map size and simplifies the learning phase. Experiments in mixed indoor/outdoor environments were carried out with a wheeled and a tracked mobile robots in order to demonstrate the validity and the benefits of the hybrid approach.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
de Cristóforis, Pablo; Nitsche, Matias Alejandro; Krajník, Tomáš ; Pire, Taihú Aguará Nahuel; Mejail, Marta Estela; Hybrid vision-based navigation for mobile robots in mixed indoor/outdoor environments; Elsevier Science; Pattern Recognition Letters; 53; 2-2015; 118-128
Compartir
Altmétricas