Mostrar el registro sencillo del ítem

dc.contributor.author
Duchowicz, Pablo Román  
dc.contributor.author
Fioressi, Silvina Ethel  
dc.contributor.author
Bacelo, Daniel Enrique  
dc.date.available
2024-11-29T11:23:26Z  
dc.date.issued
2023  
dc.identifier.citation
Duchowicz, Pablo Román; Fioressi, Silvina Ethel; Bacelo, Daniel Enrique; Computational Modeling of Drugs for Neglected Diseases; Academic Press; 2023; 559-571  
dc.identifier.isbn
978-0-443-18638-7  
dc.identifier.uri
http://hdl.handle.net/11336/248987  
dc.description.abstract
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development aims at showcasing different structure-based, ligand-based, and machine learning tools currently used in drug design. It also highlights special topics of computational drug design together with the available tools and databases. The integrated presentation of chemometrics, cheminformatics, and machine learning methods under is one of the strengths of the book.The first part of the content is devoted to establishing the foundations of the area. Here recent trends in computational modeling of drugs are presented. Other topics present in this part include QSAR in medicinal chemistry, structure-based methods, chemoinformatics and chemometric approaches, and machine learning methods in drug design. The second part focuses on methods and case studies including molecular descriptors, molecular similarity, structure-based based screening, homology modeling in protein structure predictions, molecular docking, stability of drug receptor interactions, deep learning and support vector machine in drug design. The third part of the book is dedicated to special topics, including dedicated chapters on topics ranging from de design of green pharmaceuticals to computational toxicology. The final part is dedicated to present the available tools and databases, including QSAR databases, free tools and databases in ligand and structure-based drug design, and machine learning resources for drug design. The final chapters discuss different web servers used for identification of various drug candidates.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Cheminformatics  
dc.subject
QSAR  
dc.subject
Machine Learning  
dc.subject
Drugs  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Computational Modeling of Drugs for Neglected Diseases  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2024-11-28T09:28:21Z  
dc.journal.pagination
559-571  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Fioressi, Silvina Ethel. Universidad de Belgrano. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Bacelo, Daniel Enrique. Universidad de Belgrano. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/B9780443186387000190  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/B978-0-443-18638-7.00019-0  
dc.conicet.paginas
768  
dc.source.titulo
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development