Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Deep learning for novel drug development

Título del libro: Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development

Naveiro, Roi; Martínez, María JimenaIcon ; Soto, Axel JuanIcon ; Ponzoni, IgnacioIcon ; Ríos Insua, David; Campillo, Nuria E.
Fecha de publicación: 2023
Editorial: Academic Press
ISBN: 978-0-443-18638-7
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

During the 2010s, numerous developments in the fields of artificial intelligence (AI) and statistics led to the current boom around deep learning or inference, prediction, and decision support with deep neural networks (DNNs). Such developments include the availability of graphics processing unit (GPU) kernels that facilitated considerably faster NN training; the access to massive annotated datasets in several domains, which prevented overfitting; new mathematical advances and architectural designs that mitigated convergence issues, for example, mitigating the vanishing gradient problem; and, finally, the provision of automatic differentiation libraries, such as TensorFlow, Torch, or Caffe. As other chapters in this volume expose, introducing a new drug to the market follows a costly process that typically spans over several years with a high attrition rate. Thus, accelerating this process with innovative technologies would be very beneficial. While traditional computational and statistical techniques over the last decades greatly speed up drug development, the application of recent AI tools and methods, such as deep learning, has entailed a major disruption in the drug discovery development. This chapter overviews outstanding recent advances in DNNs and their application in drug development.
Palabras clave: DEEP LEARNING , DRUG DISCOVERY , CHEMINFORMATICS , ARTIFICIAL INTELLIGENCE
Ver el registro completo
 
Archivos asociados
Tamaño: 757.6Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/239528
URL: https://www.sciencedirect.com/science/article/abs/pii/B9780443186387000256
DOI: http://dx.doi.org/10.1016/B978-0-443-18638-7.00025-6
Colecciones
Capítulos de libros (ICIC)
Capítulos de libros de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Capítulos de libros(CCT - BAHIA BLANCA)
Capítulos de libros de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Capítulos de libros(ISISTAN)
Capítulos de libros de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Naveiro, Roi; Martínez, María Jimena; Soto, Axel Juan; Ponzoni, Ignacio; Ríos Insua, David; et al.; Deep learning for novel drug development; Academic Press; 2023; 263-284
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Capítulo de Libro Computational Modeling of Drugs for Neglected Diseases
    Título del libro: Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development
    Duchowicz, Pablo Román ; Fioressi, Silvina Ethel ; Bacelo, Daniel Enrique (Academic Press, 2023)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES