Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Computational Modeling of Drugs for Neglected Diseases

Título del libro: Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development

Duchowicz, Pablo RománIcon ; Fioressi, Silvina EthelIcon ; Bacelo, Daniel EnriqueIcon
Fecha de publicación: 2023
Editorial: Academic Press
ISBN: 978-0-443-18638-7
Idioma: Inglés
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development aims at showcasing different structure-based, ligand-based, and machine learning tools currently used in drug design. It also highlights special topics of computational drug design together with the available tools and databases. The integrated presentation of chemometrics, cheminformatics, and machine learning methods under is one of the strengths of the book.The first part of the content is devoted to establishing the foundations of the area. Here recent trends in computational modeling of drugs are presented. Other topics present in this part include QSAR in medicinal chemistry, structure-based methods, chemoinformatics and chemometric approaches, and machine learning methods in drug design. The second part focuses on methods and case studies including molecular descriptors, molecular similarity, structure-based based screening, homology modeling in protein structure predictions, molecular docking, stability of drug receptor interactions, deep learning and support vector machine in drug design. The third part of the book is dedicated to special topics, including dedicated chapters on topics ranging from de design of green pharmaceuticals to computational toxicology. The final part is dedicated to present the available tools and databases, including QSAR databases, free tools and databases in ligand and structure-based drug design, and machine learning resources for drug design. The final chapters discuss different web servers used for identification of various drug candidates.
Palabras clave: Cheminformatics , QSAR , Machine Learning , Drugs
Ver el registro completo
 
Archivos asociados
Tamaño: 18.02Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/248987
URL: https://www.sciencedirect.com/science/article/abs/pii/B9780443186387000190
DOI: http://dx.doi.org/10.1016/B978-0-443-18638-7.00019-0
Colecciones
Capítulos de libros(INIFTA)
Capítulos de libros de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Duchowicz, Pablo Román; Fioressi, Silvina Ethel; Bacelo, Daniel Enrique; Computational Modeling of Drugs for Neglected Diseases; Academic Press; 2023; 559-571
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Capítulo de Libro Deep learning for novel drug development
    Título del libro: Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development
    Naveiro, Roi; Martínez, María Jimena ; Soto, Axel Juan ; Ponzoni, Ignacio ; Ríos Insua, David; Campillo, Nuria E. (Academic Press, 2023)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES