Artículo
Characterization of the Polar Profile of Bacon and Fuerte Avocado Fruits by Hydrophilic Interaction Liquid Chromatography–Mass Spectrometry: Distribution of Non-structural Carbohydrates, Quinic Acid, and Chlorogenic Acid between Seed, Mesocarp, and Exocarp at Different Ripening Stages
Beiro Valenzuela, María Gemma; Serrano García, Irene; Monasterio, Romina Paula
; Moreno Tovar, María Virginia; Hurtado Fernández, Elena; González Fernández, José Jorge; Hormaza, José Ignacio; Pedreschi, Romina; Olmo García, Lucía; Carrasco Pancorbo, Alegría
Fecha de publicación:
03/2023
Editorial:
American Chemical Society
Revista:
Journal of Agricultural and Food Chemistry
ISSN:
0021-8561
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Avocado fruit growth and development, unlike that of other fruits, is characterized by the accumulation of oil and C7 sugars (in most fruits, the carbohydrates that prevail are C6). There are five essential carbohydrates which constitute 98% of the total content of soluble sugars in this fruit; these are fructose, glucose, sucrose, d-mannoheptulose, and perseitol, which together with quinic acid and chlorogenic acid have been the analytes under study in this work. After applying an efficient extraction procedure, a novel methodology based on hydrophilic interaction liquid chromatography coupled to mass spectrometry was applied to determine the levels of these seven substances in tissues─exocarp, seed, and mesocarp─from avocado fruits of two different varieties scarcely studied, Bacon and Fuerte, at three different ripening stages. Quantitative characterization of the selected tissues was performed, and the inter-tissue distribution of metabolites was described. For both varieties, d-mannoheptulose was the major component in the mesocarp and exocarp, whereas perseitol was predominant in the seed, followed by sucrose and d-mannoheptulose. Sucrose was found to be more abundant in seed tissues, with much lower concentrations in avocado mesocarp and exocarp. Quinic acid showed a predominance in the exocarp, and chlorogenic acid was exclusively determined in exocarp samples.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IBAM)
Articulos de INST.DE BIOLOGIA AGRICOLA DE MENDOZA
Articulos de INST.DE BIOLOGIA AGRICOLA DE MENDOZA
Citación
Beiro Valenzuela, María Gemma; Serrano García, Irene; Monasterio, Romina Paula; Moreno Tovar, María Virginia; Hurtado Fernández, Elena; et al.; Characterization of the Polar Profile of Bacon and Fuerte Avocado Fruits by Hydrophilic Interaction Liquid Chromatography–Mass Spectrometry: Distribution of Non-structural Carbohydrates, Quinic Acid, and Chlorogenic Acid between Seed, Mesocarp, and Exocarp at Different Ripening Stages; American Chemical Society; Journal of Agricultural and Food Chemistry; 71; 14; 3-2023; 5674-5685
Compartir
Altmétricas