Artículo
Improving craft beer style classification through physicochemical determination and the application of deep learning techniques
Gómez Pamies, Laura Cecilia
; Bianchi, María Agostina
; Farco, Andrea Paola
; Vazquez, Raimundo Damian; Benitez, Elisa Ines
Fecha de publicación:
04/2024
Editorial:
Sociedade Brasileira de Ciência e Tecnologia de Alimentos
Revista:
Ciência e Tecnologia de Alimentos
ISSN:
0101-2061
e-ISSN:
1678-457X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The consumption of craft beer at fairs and festivals is a phenomenon that keeps growing in the world. For this reason, it is important to control the quality characteristics of the different styles. This study aimed to analyze the different styles of beer, classify them according to their physicochemical parameters, and propose a predictive pattern-based model known as deep learning that best defines the styles that are presented at festivals. Physicochemical analyses of final gravity, color, alcohol, bitterness, and α-acids were carried out on eight styles of beer. The first four parameters are those that characterize the styles according to the Beer Judge Certification Program style guide. The incorporation of the α-acid determination allowed a more realistic classification that considers the brewers’ new tendencies. This study will lay the foundations to improve local recipes, implement standardization, and provide training to local brewers.
Palabras clave:
PHYSICOCHEMICAL ATTRIBUTES
,
BEER
,
PREDICTIVE ANALYSIS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IQUIBA-NEA)
Articulos de INSTITUTO DE QUIMICA BASICA Y APLICADA DEL NORDESTE ARGENTINO
Articulos de INSTITUTO DE QUIMICA BASICA Y APLICADA DEL NORDESTE ARGENTINO
Citación
Gómez Pamies, Laura Cecilia; Bianchi, María Agostina; Farco, Andrea Paola; Vazquez, Raimundo Damian; Benitez, Elisa Ines; Improving craft beer style classification through physicochemical determination and the application of deep learning techniques; Sociedade Brasileira de Ciência e Tecnologia de Alimentos; Ciência e Tecnologia de Alimentos; 44; 4-2024; 1-7
Compartir
Altmétricas