Mostrar el registro sencillo del ítem
dc.contributor.author
Naveiro, Roi
dc.contributor.author
Martínez, María Jimena
dc.contributor.author
Soto, Axel Juan
dc.contributor.author
Ponzoni, Ignacio
dc.contributor.author
Ríos Insua, David
dc.contributor.author
Campillo, Nuria E.
dc.date.available
2024-07-10T15:54:14Z
dc.date.issued
2023
dc.identifier.citation
Naveiro, Roi; Martínez, María Jimena; Soto, Axel Juan; Ponzoni, Ignacio; Ríos Insua, David; et al.; Deep learning for novel drug development; Academic Press; 2023; 263-284
dc.identifier.isbn
978-0-443-18638-7
dc.identifier.uri
http://hdl.handle.net/11336/239528
dc.description.abstract
During the 2010s, numerous developments in the fields of artificial intelligence (AI) and statistics led to the current boom around deep learning or inference, prediction, and decision support with deep neural networks (DNNs). Such developments include the availability of graphics processing unit (GPU) kernels that facilitated considerably faster NN training; the access to massive annotated datasets in several domains, which prevented overfitting; new mathematical advances and architectural designs that mitigated convergence issues, for example, mitigating the vanishing gradient problem; and, finally, the provision of automatic differentiation libraries, such as TensorFlow, Torch, or Caffe. As other chapters in this volume expose, introducing a new drug to the market follows a costly process that typically spans over several years with a high attrition rate. Thus, accelerating this process with innovative technologies would be very beneficial. While traditional computational and statistical techniques over the last decades greatly speed up drug development, the application of recent AI tools and methods, such as deep learning, has entailed a major disruption in the drug discovery development. This chapter overviews outstanding recent advances in DNNs and their application in drug development.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEEP LEARNING
dc.subject
DRUG DISCOVERY
dc.subject
CHEMINFORMATICS
dc.subject
ARTIFICIAL INTELLIGENCE
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Deep learning for novel drug development
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2024-03-15T15:01:39Z
dc.journal.pagination
263-284
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Naveiro, Roi. Instituto de Ciencias Matemáticas; España
dc.description.fil
Fil: Martínez, María Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Soto, Axel Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
dc.description.fil
Fil: Ríos Insua, David. Instituto de Ciencias Matemáticas; España
dc.description.fil
Fil: Campillo, Nuria E.. Instituto de Ciencias Matemáticas; España
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/B9780443186387000256
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/B978-0-443-18638-7.00025-6
dc.conicet.paginas
768
dc.source.titulo
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development
Archivos asociados