Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs

Recalde Simancas, Luis Fernando; Guevara Bermeo, Bryan Stefano; Carvajal Cabrera, Christian Patricio; Andaluz Ortiz, Victor Hugo; Varela Aldás, José; Gandolfo, DanielIcon
Fecha de publicación: 07/2022
Editorial: Molecular Diversity Preservation International
Revista: Sensors
ISSN: 1424-8220
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Control Automático y Robótica

Resumen

Accurate trajectory tracking is a critical property of unmanned aerial vehicles (UAVs) due to system nonlinearities, under-actuated properties and constraints. Specifically, the use of unmanned rotorcrafts with accuracy trajectory tracking controllers in dynamic environments has the potential to improve the fields of environment monitoring, safety, search and rescue, border surveillance, geology and mining, agriculture industry, and traffic control. Monitoring operations in dynamic environments produce significant complications with respect to accuracy and obstacles in the surrounding environment and, in many cases, it is difficult to perform even with state-of-the-art controllers. This work presents a nonlinear model predictive control (NMPC) with collision avoidance for hexacopters’ trajectory tracking in dynamic environments, as well as shows a comparative study between the accuracies of the Euler–Lagrange formulation and the dynamic mode decomposition (DMD) models in order to find the precise representation of the system dynamics. The proposed controller includes limits on the maneuverability velocities, system dynamics, obstacles and the tracking error in the optimization control problem (OCP). In order to show the good performance of this control proposal, computational simulations and real experiments were carried out using a six rotary-wind unmanned aerial vehicle (hexacopter—DJI MATRICE 600). The experimental results prove the good performance of the predictive scheme and its ability to regenerate the optimal control policy. Simulation results expand the proposed controller in simulating highly dynamic environments that showing the scalability of the controller.
Palabras clave: SYSTEM IDENTIFICATION , MODEL PREDICTIVE CONTROL , OBSTACLE AVOIDANCE , HEXACOPTER UAV , SYSTEM CONSTRAINTS , OPTIMIZATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 6.364Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/210833
URL: https://www.mdpi.com/1424-8220/22/13/4712
DOI: https://doi.org/10.3390/s22134712
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Citación
Recalde Simancas, Luis Fernando; Guevara Bermeo, Bryan Stefano; Carvajal Cabrera, Christian Patricio; Andaluz Ortiz, Victor Hugo; Varela Aldás, José; et al.; System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs; Molecular Diversity Preservation International; Sensors; 22; 4712; 7-2022; 1-29
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES