Mostrar el registro sencillo del ítem

dc.contributor.author
Recalde Simancas, Luis Fernando  
dc.contributor.author
Guevara Bermeo, Bryan Stefano  
dc.contributor.author
Carvajal Cabrera, Christian Patricio  
dc.contributor.author
Andaluz Ortiz, Victor Hugo  
dc.contributor.author
Varela Aldás, José  
dc.contributor.author
Gandolfo, Daniel  
dc.date.available
2023-09-07T14:51:32Z  
dc.date.issued
2022-07  
dc.identifier.citation
Recalde Simancas, Luis Fernando; Guevara Bermeo, Bryan Stefano; Carvajal Cabrera, Christian Patricio; Andaluz Ortiz, Victor Hugo; Varela Aldás, José; et al.; System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs; Molecular Diversity Preservation International; Sensors; 22; 4712; 7-2022; 1-29  
dc.identifier.issn
1424-8220  
dc.identifier.uri
http://hdl.handle.net/11336/210833  
dc.description.abstract
Accurate trajectory tracking is a critical property of unmanned aerial vehicles (UAVs) due to system nonlinearities, under-actuated properties and constraints. Specifically, the use of unmanned rotorcrafts with accuracy trajectory tracking controllers in dynamic environments has the potential to improve the fields of environment monitoring, safety, search and rescue, border surveillance, geology and mining, agriculture industry, and traffic control. Monitoring operations in dynamic environments produce significant complications with respect to accuracy and obstacles in the surrounding environment and, in many cases, it is difficult to perform even with state-of-the-art controllers. This work presents a nonlinear model predictive control (NMPC) with collision avoidance for hexacopters’ trajectory tracking in dynamic environments, as well as shows a comparative study between the accuracies of the Euler–Lagrange formulation and the dynamic mode decomposition (DMD) models in order to find the precise representation of the system dynamics. The proposed controller includes limits on the maneuverability velocities, system dynamics, obstacles and the tracking error in the optimization control problem (OCP). In order to show the good performance of this control proposal, computational simulations and real experiments were carried out using a six rotary-wind unmanned aerial vehicle (hexacopter—DJI MATRICE 600). The experimental results prove the good performance of the predictive scheme and its ability to regenerate the optimal control policy. Simulation results expand the proposed controller in simulating highly dynamic environments that showing the scalability of the controller.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Molecular Diversity Preservation International  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
SYSTEM IDENTIFICATION  
dc.subject
MODEL PREDICTIVE CONTROL  
dc.subject
OBSTACLE AVOIDANCE  
dc.subject
HEXACOPTER UAV  
dc.subject
SYSTEM CONSTRAINTS  
dc.subject
OPTIMIZATION  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-06T12:49:28Z  
dc.journal.volume
22  
dc.journal.number
4712  
dc.journal.pagination
1-29  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Recalde Simancas, Luis Fernando. Universidad Tecnologica Indoamerica.; Ecuador  
dc.description.fil
Fil: Guevara Bermeo, Bryan Stefano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Carvajal Cabrera, Christian Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Andaluz Ortiz, Victor Hugo. Universidad de Las Fuerzas Armadas; Ecuador  
dc.description.fil
Fil: Varela Aldás, José. Universidad Tecnologica Indoamerica.; Ecuador. Universidad de Zaragoza. Facultad de Ciencias; España  
dc.description.fil
Fil: Gandolfo, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.journal.title
Sensors  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1424-8220/22/13/4712  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/s22134712