Mostrar el registro sencillo del ítem
dc.contributor.author
Recalde Simancas, Luis Fernando
dc.contributor.author
Guevara Bermeo, Bryan Stefano
dc.contributor.author
Carvajal Cabrera, Christian Patricio
dc.contributor.author
Andaluz Ortiz, Victor Hugo
dc.contributor.author
Varela Aldás, José
dc.contributor.author
Gandolfo, Daniel
dc.date.available
2023-09-07T14:51:32Z
dc.date.issued
2022-07
dc.identifier.citation
Recalde Simancas, Luis Fernando; Guevara Bermeo, Bryan Stefano; Carvajal Cabrera, Christian Patricio; Andaluz Ortiz, Victor Hugo; Varela Aldás, José; et al.; System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs; Molecular Diversity Preservation International; Sensors; 22; 4712; 7-2022; 1-29
dc.identifier.issn
1424-8220
dc.identifier.uri
http://hdl.handle.net/11336/210833
dc.description.abstract
Accurate trajectory tracking is a critical property of unmanned aerial vehicles (UAVs) due to system nonlinearities, under-actuated properties and constraints. Specifically, the use of unmanned rotorcrafts with accuracy trajectory tracking controllers in dynamic environments has the potential to improve the fields of environment monitoring, safety, search and rescue, border surveillance, geology and mining, agriculture industry, and traffic control. Monitoring operations in dynamic environments produce significant complications with respect to accuracy and obstacles in the surrounding environment and, in many cases, it is difficult to perform even with state-of-the-art controllers. This work presents a nonlinear model predictive control (NMPC) with collision avoidance for hexacopters’ trajectory tracking in dynamic environments, as well as shows a comparative study between the accuracies of the Euler–Lagrange formulation and the dynamic mode decomposition (DMD) models in order to find the precise representation of the system dynamics. The proposed controller includes limits on the maneuverability velocities, system dynamics, obstacles and the tracking error in the optimization control problem (OCP). In order to show the good performance of this control proposal, computational simulations and real experiments were carried out using a six rotary-wind unmanned aerial vehicle (hexacopter—DJI MATRICE 600). The experimental results prove the good performance of the predictive scheme and its ability to regenerate the optimal control policy. Simulation results expand the proposed controller in simulating highly dynamic environments that showing the scalability of the controller.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Molecular Diversity Preservation International
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
SYSTEM IDENTIFICATION
dc.subject
MODEL PREDICTIVE CONTROL
dc.subject
OBSTACLE AVOIDANCE
dc.subject
HEXACOPTER UAV
dc.subject
SYSTEM CONSTRAINTS
dc.subject
OPTIMIZATION
dc.subject.classification
Control Automático y Robótica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
System Identification and Nonlinear Model Predictive Control with Collision Avoidance Applied in Hexacopters UAVs
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-06T12:49:28Z
dc.journal.volume
22
dc.journal.number
4712
dc.journal.pagination
1-29
dc.journal.pais
Suiza
dc.journal.ciudad
Basel
dc.description.fil
Fil: Recalde Simancas, Luis Fernando. Universidad Tecnologica Indoamerica.; Ecuador
dc.description.fil
Fil: Guevara Bermeo, Bryan Stefano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Carvajal Cabrera, Christian Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Andaluz Ortiz, Victor Hugo. Universidad de Las Fuerzas Armadas; Ecuador
dc.description.fil
Fil: Varela Aldás, José. Universidad Tecnologica Indoamerica.; Ecuador. Universidad de Zaragoza. Facultad de Ciencias; España
dc.description.fil
Fil: Gandolfo, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.journal.title
Sensors
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1424-8220/22/13/4712
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/s22134712
Archivos asociados