Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Mechanistically Inspired Kinetic Approach to Describe Interactions During Co‐Culture Growth of Carnobacterium maltaromaticum and Listeria monocytogenes

Pedrozo, Hector AlejandroIcon ; Dallagnol, Andrea MicaelaIcon ; Vignolo, Graciela MargaritaIcon ; Pucciarelli Roman, Amada Beatriz; Schvezov, Carlos EnriqueIcon
Fecha de publicación: 09/2019
Editorial: Wiley Blackwell Publishing, Inc
Revista: Journal of Food Science
ISSN: 0022-1147
e-ISSN: 1750-3841
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Alimentos y Bebidas

Resumen

Lactic acid bacteria and Listeria monocytogenes are psychotropic organisms that can grow and compete in food such as lightly preserved fishery products. Predictive microbiology is nowadays one of the leading tools to assess the behavior of bacteria in food and to predict food spoilage. Mathematical models can be used to predict the growth, inactivation or growth probability of bacteria. Currently, the efforts in microbial modeling are oriented towards extrapolation of results beyond experiments in order to predict the growth of interacting microorganisms and develop new food preservation processes. In the present work, a model combining both heterogeneous population and quasi-chemical approaches to describe the different phases of the bacterial growth curve is presented. The model was applied to both monoculture and co-culture cases of lactic acid bacteria, Carnobacterium maltaromaticum H-17, and two Listeria monocytogenes strains in a raw fish extract. It is a highlight that our model includes novel inhibition reactions due to the accumulation of metabolites, and a general equation to take into account the effect of chemical compounds during the lag or physiological adaptation phase of the cells. Our results show that the proposed model can accurately describe the experimental data when the curve shape is a sigmoid, and when it presents a maximum. Besides, the parameters have biological interpretability since the model is mechanistically inspired.
Palabras clave: PREDICTIVE MICROBIOLOGY , MATHEMATICAL MODELING , LACTIC ACID BACTERIA , LISTERIA MONOCYTOGENES , FOOD SAFETY
Ver el registro completo
 
Archivos asociados
Tamaño: 1.463Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/104862
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/1750-3841.14754
DOI: http://dx.doi.org/10.1111/1750-3841.14754
Colecciones
Articulos(CERELA)
Articulos de CENTRO DE REFERENCIA PARA LACTOBACILOS (I)
Articulos(IMAM)
Articulos de INST.DE MATERIALES DE MISIONES
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Pedrozo, Hector Alejandro; Dallagnol, Andrea Micaela; Vignolo, Graciela Margarita; Pucciarelli Roman, Amada Beatriz; Schvezov, Carlos Enrique; Mechanistically Inspired Kinetic Approach to Describe Interactions During Co‐Culture Growth of Carnobacterium maltaromaticum and Listeria monocytogenes; Wiley Blackwell Publishing, Inc; Journal of Food Science; 84; 9; 9-2019; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES