Artículo
Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments
Gimenez Romero, Javier Alejandro
; Tosetti Sanz, Santiago Ramon
; Salinas, Lucio Rafael
; Carelli Albarracin, Ricardo Oscar
![Icon](/themes/CONICETDigital/images/conicet.png)
![Icon](/themes/CONICETDigital/images/conicet.png)
![Icon](/themes/CONICETDigital/images/conicet.png)
![Icon](/themes/CONICETDigital/images/conicet.png)
Fecha de publicación:
08/2018
Editorial:
Elsevier
Revista:
Computers and Eletronics in Agriculture
ISSN:
0168-1699
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Spatial awareness and memory are key factors for a robot to evolve in semi-structured and dynamic environments as those found in agriculture, and particularly in fruit crops where the trees are regularly distributed. This paper proposes a probabilistic method for mapping out-of-structure objects (weeds, workers, machines, fallen branches, etc.) using a Kernel density estimator. The methodology has theoretical and practical advantages over the well-known occupancy grid map estimator such as optimization of storage resources, online update, high resolution, and straightforward adaptability to dynamic environments. An example application would be a control scheme through which a robot is able to perform cautious navigation in areas with high probability of finding obstacles. Simulations and experiments show that large extensions can be online mapped with few data and high spatial resolution.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Articulos de INSTITUTO DE AUTOMATICA
Citación
Gimenez Romero, Javier Alejandro; Tosetti Sanz, Santiago Ramon; Salinas, Lucio Rafael; Carelli Albarracin, Ricardo Oscar; Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments; Elsevier; Computers and Eletronics in Agriculture; 151; 8-2018; 11-20
Compartir
Altmétricas