Mostrar el registro sencillo del ítem

dc.contributor.author
Maronna, Ricardo Antonio  
dc.contributor.author
Yohai, Victor Jaime  
dc.date.available
2018-12-06T18:27:05Z  
dc.date.issued
2017-05  
dc.identifier.citation
Maronna, Ricardo Antonio; Yohai, Victor Jaime; Robust and efficient estimation of multivariate scatter and location; Elsevier Science; Computational Statistics and Data Analysis; 109; 5-2017; 64-75  
dc.identifier.issn
0167-9473  
dc.identifier.uri
http://hdl.handle.net/11336/66010  
dc.description.abstract
Several equivariant estimators of multivariate location and scatter are studied, which are highly robust, have a controllable finite-sample efficiency and are computationally feasible in large dimensions. The most frequently employed estimators are not quite satisfactory in this respect. The Minimum Volume Ellipsoid (MVE) and the Minimum Covariance Determinant (MCD) estimators are known to have a very low efficiency. S-estimators with a monotonic weight function like the bisquare have a low efficiency when the dimension p is small, and their efficiency tends to one with increasing p. Unfortunately, this advantage is outweighed by a serious loss in robustness for large p. Four families of estimators with controllable efficiencies whose performance for moderate to large p has not been explored to date are studied: S-estimators with a non-monotonic weight function, MM-estimators, τ-estimators, and the Stahel–Donoho estimator. Two types of starting estimators are employed: the MVE computed through subsampling, and a semi-deterministic procedure previously proposed for outlier detection, based on the projections with maximum and minimum kurtosis. A simulation study shows that an S-estimator with non-monotonic weight function can simultaneously attain high efficiency and high robustness for p≥15, while an MM-estimator with a particular weight function can be recommended for p>15. For both recommended estimators, the initial values are given by the semi-deterministic procedure mentioned above.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Kullback&Ndash;Leibler Divergence  
dc.subject
Mm-Estimator  
dc.subject
S-Estimator  
dc.subject
Stahel&Ndash;Donoho Estimator  
dc.subject
Τ-Estimator  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust and efficient estimation of multivariate scatter and location  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-11-02T17:31:54Z  
dc.journal.volume
109  
dc.journal.pagination
64-75  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Maronna, Ricardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina  
dc.description.fil
Fil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.journal.title
Computational Statistics and Data Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.csda.2016.11.006  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947316302705