Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Robust and efficient estimation of multivariate scatter and location

Maronna, Ricardo Antonio; Yohai, Victor JaimeIcon
Fecha de publicación: 05/2017
Editorial: Elsevier Science
Revista: Computational Statistics and Data Analysis
ISSN: 0167-9473
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Several equivariant estimators of multivariate location and scatter are studied, which are highly robust, have a controllable finite-sample efficiency and are computationally feasible in large dimensions. The most frequently employed estimators are not quite satisfactory in this respect. The Minimum Volume Ellipsoid (MVE) and the Minimum Covariance Determinant (MCD) estimators are known to have a very low efficiency. S-estimators with a monotonic weight function like the bisquare have a low efficiency when the dimension p is small, and their efficiency tends to one with increasing p. Unfortunately, this advantage is outweighed by a serious loss in robustness for large p. Four families of estimators with controllable efficiencies whose performance for moderate to large p has not been explored to date are studied: S-estimators with a non-monotonic weight function, MM-estimators, τ-estimators, and the Stahel–Donoho estimator. Two types of starting estimators are employed: the MVE computed through subsampling, and a semi-deterministic procedure previously proposed for outlier detection, based on the projections with maximum and minimum kurtosis. A simulation study shows that an S-estimator with non-monotonic weight function can simultaneously attain high efficiency and high robustness for p≥15, while an MM-estimator with a particular weight function can be recommended for p>15. For both recommended estimators, the initial values are given by the semi-deterministic procedure mentioned above.
Palabras clave: Kullback&Ndash;Leibler Divergence , Mm-Estimator , S-Estimator , Stahel&Ndash;Donoho Estimator , Τ-Estimator
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 456.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/66010
DOI: https://dx.doi.org/10.1016/j.csda.2016.11.006
URL: https://www.sciencedirect.com/science/article/pii/S0167947316302705
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Maronna, Ricardo Antonio; Yohai, Victor Jaime; Robust and efficient estimation of multivariate scatter and location; Elsevier Science; Computational Statistics and Data Analysis; 109; 5-2017; 64-75
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo Asymptotic behavior of robust estimators in partially linear models with missing responses: The effect of estimating the missing probability on the simplified marginal estimators
    Bianco, Ana Maria ; Boente Boente, Graciela Lina ; González Manteiga, Wenceslao; Perez Gonzalez, Ana (Springer, 2011-11)
  • Artículo Costos de enfermedades: una revisión crítica de las metodologías de estimación
    Ripari, Nadia Vanina ; Moscoso, Nebel Silvana ; Elorza, Maria Eugenia (Universidad de Antioquia. Facultad de Ciencias Económicas, 2012-12)
  • Evento Application of Affine Estimators to Single Tone Frequency Estimation
    Gama, Fernando; Casaglia, Daniel Claudio ; Cernuschi Frias, Bruno (Sociedad Argentina de Informática, 2012)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES