Mostrar el registro sencillo del ítem

dc.contributor.author
Agostinelli, Claudio  
dc.contributor.author
Locatelli, Isabella  
dc.contributor.author
Marazzi, Alfio Natale  
dc.contributor.author
Yohai, Victor Jaime  
dc.date.available
2018-12-06T18:26:44Z  
dc.date.issued
2017-03  
dc.identifier.citation
Agostinelli, Claudio; Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust estimators of accelerated failure time regression with generalized log-gamma errors; Elsevier Science; Computational Statistics and Data Analysis; 107; 3-2017; 92-106  
dc.identifier.issn
0167-9473  
dc.identifier.uri
http://hdl.handle.net/11336/66008  
dc.description.abstract
The generalized log-gamma (GLG) model is a very flexible family of distributions to analyze datasets in many different areas of science and technology. Estimators are proposed which are simultaneously highly robust and highly efficient for the parameters of a GLG distribution in the presence of censoring. Estimators with the same properties for accelerated failure time models with censored observations and error distribution belonging to the GLG family are also introduced. It is proven that the proposed estimators are asymptotically fully efficient and the maximum mean square error is examined using Monte Carlo simulations. The simulations confirm that the proposed estimators are highly robust and highly efficient for a finite sample size. Finally, the benefits of the proposed estimators in applications are illustrated with the help of two real datasets.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Censored Data  
dc.subject
Quantile Distance Estimates  
dc.subject
Truncated Maximum Likelihood Estimators  
dc.subject
Weighted Likelihood Estimators  
dc.subject
Τ Estimators  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust estimators of accelerated failure time regression with generalized log-gamma errors  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-11-02T17:31:46Z  
dc.journal.volume
107  
dc.journal.pagination
92-106  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Agostinelli, Claudio. University of Trento; Italia  
dc.description.fil
Fil: Locatelli, Isabella. Lausanne University Hospital; Suiza  
dc.description.fil
Fil: Marazzi, Alfio Natale. Lausanne University Hospital; Suiza. Nice Computing SA; Suiza  
dc.description.fil
Fil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina  
dc.journal.title
Computational Statistics and Data Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.csda.2016.10.012  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947316302390