Mostrar el registro sencillo del ítem
dc.contributor.author
Agostinelli, Claudio
dc.contributor.author
Locatelli, Isabella
dc.contributor.author
Marazzi, Alfio Natale
dc.contributor.author
Yohai, Victor Jaime
dc.date.available
2018-12-06T18:26:44Z
dc.date.issued
2017-03
dc.identifier.citation
Agostinelli, Claudio; Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust estimators of accelerated failure time regression with generalized log-gamma errors; Elsevier Science; Computational Statistics and Data Analysis; 107; 3-2017; 92-106
dc.identifier.issn
0167-9473
dc.identifier.uri
http://hdl.handle.net/11336/66008
dc.description.abstract
The generalized log-gamma (GLG) model is a very flexible family of distributions to analyze datasets in many different areas of science and technology. Estimators are proposed which are simultaneously highly robust and highly efficient for the parameters of a GLG distribution in the presence of censoring. Estimators with the same properties for accelerated failure time models with censored observations and error distribution belonging to the GLG family are also introduced. It is proven that the proposed estimators are asymptotically fully efficient and the maximum mean square error is examined using Monte Carlo simulations. The simulations confirm that the proposed estimators are highly robust and highly efficient for a finite sample size. Finally, the benefits of the proposed estimators in applications are illustrated with the help of two real datasets.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Censored Data
dc.subject
Quantile Distance Estimates
dc.subject
Truncated Maximum Likelihood Estimators
dc.subject
Weighted Likelihood Estimators
dc.subject
Τ Estimators
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust estimators of accelerated failure time regression with generalized log-gamma errors
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-11-02T17:31:46Z
dc.journal.volume
107
dc.journal.pagination
92-106
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Agostinelli, Claudio. University of Trento; Italia
dc.description.fil
Fil: Locatelli, Isabella. Lausanne University Hospital; Suiza
dc.description.fil
Fil: Marazzi, Alfio Natale. Lausanne University Hospital; Suiza. Nice Computing SA; Suiza
dc.description.fil
Fil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
dc.journal.title
Computational Statistics and Data Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.csda.2016.10.012
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947316302390
Archivos asociados