Artículo
Robust estimators of accelerated failure time regression with generalized log-gamma errors
Fecha de publicación:
03/2017
Editorial:
Elsevier Science
Revista:
Computational Statistics and Data Analysis
ISSN:
0167-9473
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The generalized log-gamma (GLG) model is a very flexible family of distributions to analyze datasets in many different areas of science and technology. Estimators are proposed which are simultaneously highly robust and highly efficient for the parameters of a GLG distribution in the presence of censoring. Estimators with the same properties for accelerated failure time models with censored observations and error distribution belonging to the GLG family are also introduced. It is proven that the proposed estimators are asymptotically fully efficient and the maximum mean square error is examined using Monte Carlo simulations. The simulations confirm that the proposed estimators are highly robust and highly efficient for a finite sample size. Finally, the benefits of the proposed estimators in applications are illustrated with the help of two real datasets.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Agostinelli, Claudio; Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust estimators of accelerated failure time regression with generalized log-gamma errors; Elsevier Science; Computational Statistics and Data Analysis; 107; 3-2017; 92-106
Compartir
Altmétricas
Items relacionados
Mostrando titulos relacionados por título, autor y tema.
-
Bianco, Ana Maria ; Boente Boente, Graciela Lina ; González Manteiga, Wenceslao; Perez Gonzalez, Ana (Springer, 2011-11)
-
Ripari, Nadia Vanina ; Moscoso, Nebel Silvana ; Elorza, Maria Eugenia (Universidad de Antioquia. Facultad de Ciencias Económicas, 2012-12)
-
Gama, Fernando; Casaglia, Daniel Claudio ; Cernuschi Frias, Bruno (Sociedad Argentina de Informática, 2012)