Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A hybrid evolutionary algorithm based on adaptive mutation and crossover for collaborative learning team formation in higher education

Yannibelli, Virginia DanielaIcon ; Amandi, Analia AdrianaIcon
Fecha de publicación: 10/2017
Editorial: Springer
Revista: Lecture Notes in Computer Science
ISSN: 0302-9743
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In this paper, we address a collaborative learning team formation problem in higher education environments. This problem considers a grouping criterion successfully evaluated in a wide variety of higher education courses and training programs. To solve the problem, we propose a hybrid evolutionary algorithm based on adaptive mutation and crossover processes. The behavior of these processes is adaptive according to the diversity of the evolutionary algorithm population. These processes are meant to enhance the evolutionary search. The performance of the hybrid evolutionary algorithm is evaluated on ten different data sets, and then, is compared with that of the best algorithm previously proposed in the literature for the addressed problem. The obtained results indicate that the hybrid evolutionary algorithm considerably outperforms the previous algorithm.
Palabras clave: Adaptive Evolutionary Algorithms , Collaborative Learning , Collaborative Learning Team Formation , Evolutionary Algorithms , Hybrid Evolutionary Algorithms , Simulated Annealing Algorithms , Team Roles
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 202.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/64875
DOI: https://dx.doi.org/10.1007/978-3-319-68935-7_38
URL: https://link.springer.com/chapter/10.1007/978-3-319-68935-7_38
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Yannibelli, Virginia Daniela; Amandi, Analia Adriana; A hybrid evolutionary algorithm based on adaptive mutation and crossover for collaborative learning team formation in higher education; Springer; Lecture Notes in Computer Science; 10585 LNCS; 10-2017; 345-354
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem
    Yannibelli, Virginia Daniela ; Amandi, Analia Adriana (Elsevier, 2012-11)
  • Artículo Regularity of the Euclid Algorithm; application to the analysis of fast GCD Algorithms
    Cesaratto, Eda ; Clément, Julien; Daireaux, Benoit; Lhote, Loick; Maume, Veronique; Vallée, Brigitte (Academic Press Ltd - Elsevier Science Ltd, 2009-07)
  • Artículo A novel modular positive-sequence synchrophasor estimation algorithm for PMUs
    Messina, Francisco Javier; Marchi, Pablo Gabriel ; Rey Vega, Leonardo Javier ; Galarza, Cecilia Gabriela ; Laiz, Héctor (Institute of Electrical and Electronics Engineers, 2017-06)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES