Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem

Yannibelli, Virginia DanielaIcon ; Amandi, Analia AdrianaIcon
Fecha de publicación: 11/2012
Editorial: Elsevier
Revista: Expert Systems with Applications
ISSN: 0957-4174
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In this paper, a multi-objective project scheduling problem is addressed. This problem considers two conflicting, priority optimization objectives for project managers. One of these objectives is to minimize the project makespan. The other objective is to assign the most effective set of human resources to each project activity. To solve the problem, a multi-objective hybrid search and optimization algorithm is proposed. This algorithm is composed by a multi-objective simulated annealing algorithm and a multi-objective evolutionary algorithm. The multi-objective simulated annealing algorithm is integrated into the multi-objective evolutionary algorithm to improve the performance of the evolutionary-based search. To achieve this, the behavior of the multi-objective simulated annealing algorithm is self-adaptive to either an exploitation process or an exploration process depending on the state of the evolutionary-based search. The multi-objective hybrid algorithm generates a number of near non-dominated solutions so as to provide solutions with different trade-offs between the optimization objectives to project managers. The performance of the multi-objective hybrid algorithm is evaluated on nine different instance sets, and is compared with that of the only multi-objective algorithm previously proposed in the literature for solving the addressed problem. The performance comparison shows that the multi-objective hybrid algorithm significantly outperforms the previous multi-objective algorithm.
Palabras clave: Multi-Objective Project Scheduling , Multi-Objective Hybrid Algorithm , Multi-Objective Simulated Annealling Algorithm , Multi-Objective Evolutionary Algorithm
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 854.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/33479
DOI: http://dx.doi.org/10.1016/j.eswa.2012.10.058
URL: http://www.sciencedirect.com/science/article/pii/S0957417412011827
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Amandi, Analia Adriana; Yannibelli, Virginia Daniela; Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem; Elsevier; Expert Systems with Applications; 40; 7; 11-2012; 2421-2434
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm
    Baquela, Enrique Gabriel; Olivera, Ana Carolina (Elsevier, 2019-01)
  • Artículo A Decision Support Tool for Urban Freight Transport Planning Based on a Multi-Objective Evolutionary Algorithm
    Miguel, Fabio Maximilian; Frutos, Mariano ; Tohmé, Fernando Abel ; Méndez Babey, Máximo (Institute of Electrical and Electronics Engineers, 2019-11-07)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES