Mostrar el registro sencillo del ítem
dc.contributor.author
Yannibelli, Virginia Daniela
dc.contributor.author
Amandi, Analia Adriana
dc.date.available
2018-11-21T18:18:02Z
dc.date.issued
2017-10
dc.identifier.citation
Yannibelli, Virginia Daniela; Amandi, Analia Adriana; A hybrid evolutionary algorithm based on adaptive mutation and crossover for collaborative learning team formation in higher education; Springer; Lecture Notes in Computer Science; 10585 LNCS; 10-2017; 345-354
dc.identifier.issn
0302-9743
dc.identifier.uri
http://hdl.handle.net/11336/64875
dc.description.abstract
In this paper, we address a collaborative learning team formation problem in higher education environments. This problem considers a grouping criterion successfully evaluated in a wide variety of higher education courses and training programs. To solve the problem, we propose a hybrid evolutionary algorithm based on adaptive mutation and crossover processes. The behavior of these processes is adaptive according to the diversity of the evolutionary algorithm population. These processes are meant to enhance the evolutionary search. The performance of the hybrid evolutionary algorithm is evaluated on ten different data sets, and then, is compared with that of the best algorithm previously proposed in the literature for the addressed problem. The obtained results indicate that the hybrid evolutionary algorithm considerably outperforms the previous algorithm.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Adaptive Evolutionary Algorithms
dc.subject
Collaborative Learning
dc.subject
Collaborative Learning Team Formation
dc.subject
Evolutionary Algorithms
dc.subject
Hybrid Evolutionary Algorithms
dc.subject
Simulated Annealing Algorithms
dc.subject
Team Roles
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A hybrid evolutionary algorithm based on adaptive mutation and crossover for collaborative learning team formation in higher education
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-05T16:23:47Z
dc.journal.volume
10585 LNCS
dc.journal.pagination
345-354
dc.journal.pais
Alemania
dc.journal.ciudad
Heidelberg
dc.description.fil
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina
dc.description.fil
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Sistemas Tandil; Argentina
dc.journal.title
Lecture Notes in Computer Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1007/978-3-319-68935-7_38
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-319-68935-7_38
Archivos asociados