Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Image features for visual teach-and-repeat navigation in changing environments

Krajník, Tomáš; de Cristóforis, PabloIcon ; Kusumam, Keerthy; Neubert, Peer; Duckett, Tom
Fecha de publicación: 02/2017
Editorial: Elsevier Science
Revista: Robotics And Autonomous Systems
ISSN: 0921-8890
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

We present an evaluation of standard image features in the context of long-term visual teach-and-repeat navigation of mobile robots, where the environment exhibits significant changes in appearance caused by seasonal weather variations and daily illumination changes. We argue that for long-term autonomous navigation, the viewpoint-, scale- and rotation- invariance of the standard feature extractors is less important than their robustness to the mid- and long-term environment appearance changes. Therefore, we focus our evaluation on the robustness of image registration to variable lighting and naturally-occurring seasonal changes. We combine detection and description components of different image extractors and evaluate their performance on five datasets collected by mobile vehicles in three different outdoor environments over the course of one year. Moreover, we propose a trainable feature descriptor based on a combination of evolutionary algorithms and Binary Robust Independent Elementary Features, which we call GRIEF (Generated BRIEF). In terms of robustness to seasonal changes, the most promising results were achieved by the SpG/CNN and the STAR/GRIEF feature, which was slightly less robust, but faster to calculate.
Palabras clave: Long-Term Autonomy , Mobile Robotics , Visual Navigation
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.524Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/59803
URL: http://www.sciencedirect.com/science/article/pii/S0921889016300574
DOI: http://dx.doi.org/10.1016/j.robot.2016.11.011
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Krajník, Tomáš; de Cristóforis, Pablo; Kusumam, Keerthy; Neubert, Peer; Duckett, Tom; Image features for visual teach-and-repeat navigation in changing environments; Elsevier Science; Robotics And Autonomous Systems; 88; 2-2017; 127-141
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES