Mostrar el registro sencillo del ítem
dc.contributor.author
Krajník, Tomáš
dc.contributor.author
de Cristóforis, Pablo
dc.contributor.author
Kusumam, Keerthy
dc.contributor.author
Neubert, Peer
dc.contributor.author
Duckett, Tom
dc.date.available
2018-09-14T20:49:59Z
dc.date.issued
2017-02
dc.identifier.citation
Krajník, Tomáš; de Cristóforis, Pablo; Kusumam, Keerthy; Neubert, Peer; Duckett, Tom; Image features for visual teach-and-repeat navigation in changing environments; Elsevier Science; Robotics And Autonomous Systems; 88; 2-2017; 127-141
dc.identifier.issn
0921-8890
dc.identifier.uri
http://hdl.handle.net/11336/59803
dc.description.abstract
We present an evaluation of standard image features in the context of long-term visual teach-and-repeat navigation of mobile robots, where the environment exhibits significant changes in appearance caused by seasonal weather variations and daily illumination changes. We argue that for long-term autonomous navigation, the viewpoint-, scale- and rotation- invariance of the standard feature extractors is less important than their robustness to the mid- and long-term environment appearance changes. Therefore, we focus our evaluation on the robustness of image registration to variable lighting and naturally-occurring seasonal changes. We combine detection and description components of different image extractors and evaluate their performance on five datasets collected by mobile vehicles in three different outdoor environments over the course of one year. Moreover, we propose a trainable feature descriptor based on a combination of evolutionary algorithms and Binary Robust Independent Elementary Features, which we call GRIEF (Generated BRIEF). In terms of robustness to seasonal changes, the most promising results were achieved by the SpG/CNN and the STAR/GRIEF feature, which was slightly less robust, but faster to calculate.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Long-Term Autonomy
dc.subject
Mobile Robotics
dc.subject
Visual Navigation
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Image features for visual teach-and-repeat navigation in changing environments
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-09-14T13:16:57Z
dc.journal.volume
88
dc.journal.pagination
127-141
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Krajník, Tomáš. University of Lincoln; Reino Unido
dc.description.fil
Fil: de Cristóforis, Pablo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Kusumam, Keerthy. University of Lincoln; Reino Unido. The University of Nottingham; Reino Unido
dc.description.fil
Fil: Neubert, Peer. Technische Universität Chemnitz; Alemania
dc.description.fil
Fil: Duckett, Tom. University of Lincoln; Reino Unido
dc.journal.title
Robotics And Autonomous Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0921889016300574
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.robot.2016.11.011
Archivos asociados