Mostrar el registro sencillo del ítem

dc.contributor.author
Krajník, Tomáš  
dc.contributor.author
de Cristóforis, Pablo  
dc.contributor.author
Kusumam, Keerthy  
dc.contributor.author
Neubert, Peer  
dc.contributor.author
Duckett, Tom  
dc.date.available
2018-09-14T20:49:59Z  
dc.date.issued
2017-02  
dc.identifier.citation
Krajník, Tomáš; de Cristóforis, Pablo; Kusumam, Keerthy; Neubert, Peer; Duckett, Tom; Image features for visual teach-and-repeat navigation in changing environments; Elsevier Science; Robotics And Autonomous Systems; 88; 2-2017; 127-141  
dc.identifier.issn
0921-8890  
dc.identifier.uri
http://hdl.handle.net/11336/59803  
dc.description.abstract
We present an evaluation of standard image features in the context of long-term visual teach-and-repeat navigation of mobile robots, where the environment exhibits significant changes in appearance caused by seasonal weather variations and daily illumination changes. We argue that for long-term autonomous navigation, the viewpoint-, scale- and rotation- invariance of the standard feature extractors is less important than their robustness to the mid- and long-term environment appearance changes. Therefore, we focus our evaluation on the robustness of image registration to variable lighting and naturally-occurring seasonal changes. We combine detection and description components of different image extractors and evaluate their performance on five datasets collected by mobile vehicles in three different outdoor environments over the course of one year. Moreover, we propose a trainable feature descriptor based on a combination of evolutionary algorithms and Binary Robust Independent Elementary Features, which we call GRIEF (Generated BRIEF). In terms of robustness to seasonal changes, the most promising results were achieved by the SpG/CNN and the STAR/GRIEF feature, which was slightly less robust, but faster to calculate.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Long-Term Autonomy  
dc.subject
Mobile Robotics  
dc.subject
Visual Navigation  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Image features for visual teach-and-repeat navigation in changing environments  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-14T13:16:57Z  
dc.journal.volume
88  
dc.journal.pagination
127-141  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Krajník, Tomáš. University of Lincoln; Reino Unido  
dc.description.fil
Fil: de Cristóforis, Pablo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Kusumam, Keerthy. University of Lincoln; Reino Unido. The University of Nottingham; Reino Unido  
dc.description.fil
Fil: Neubert, Peer. Technische Universität Chemnitz; Alemania  
dc.description.fil
Fil: Duckett, Tom. University of Lincoln; Reino Unido  
dc.journal.title
Robotics And Autonomous Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0921889016300574  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.robot.2016.11.011