Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Integrated application of enhanced replacement method and ensemble learning for the prediction of BCRP/ABCG2 substrates

Gantner, Melisa EdithIcon ; Alberca, Lucas NicolásIcon ; Mercader, Andrew GustavoIcon ; Bruno Blanch, Luis Enrique; Talevi, AlanIcon
Fecha de publicación: 06/2017
Editorial: Bentham Science Publishers
Revista: Current Bioinformatics
ISSN: 1574-8936
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

Background: Breast Cancer Resistance Protein (BCRP or ABCG2) is a polyspecific efflux transporter which belongs to the ATP-binding Cassette superfamily. Up-regulation of BCRP is associated to multi-drug resistance in a number of conditions, e.g. cancer and epilepsy. Recent proteomic studies show that high expression levels of BCRP are found in healthy human intestine and at the blood-brain barrier, limiting the absorption and brain distribution of its substrates. Therefore, the early recognition of BCRP substrates seems to be crucial in the early phase of drug discovery. Objective: The development of computational models that allow the early detection of BCRP substrates and non-substrates. Method: We have jointly applied the Enhanced Replacement Method and ensemble learning approaches to obtain combinations of 2D linear classifiers capable of discriminating among substrates and nonsubstrates of the wild type human BCRP. Results: The ensemble learning approach combining the 10-Enhanced Replacement Method best individual models obtained through MAX Operator displayed the best ability to discriminate between BCRP substrates and non-substrates across all the validation sets/libraries used. Conclusion: The best model ensemble obtained outperforms previously reported 2D linear classifiers, showing the ability of the Enhanced Replacement Method and ensemble learning schemes to optimize the performance of individual models. This is the first application of the Enhanced Replacement Method to solve classification problems.
Palabras clave: Abc Transporters , Abcg2 , Breast Cancer Resistance Protein , Enhanced Replacement Method , Ensemble Learning , Linear Classifiers
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 924.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/56547
DOI: http://dx.doi.org/10.2174/1574893611666151109193016
URL: http://www.eurekaselect.com/node/136755/article
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Gantner, Melisa Edith; Alberca, Lucas Nicolás; Mercader, Andrew Gustavo; Bruno Blanch, Luis Enrique; Talevi, Alan; Integrated application of enhanced replacement method and ensemble learning for the prediction of BCRP/ABCG2 substrates; Bentham Science Publishers; Current Bioinformatics; 12; 3; 6-2017; 239-248
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES