Mostrar el registro sencillo del ítem

dc.contributor.author
Gantner, Melisa Edith  
dc.contributor.author
Alberca, Lucas Nicolás  
dc.contributor.author
Mercader, Andrew Gustavo  
dc.contributor.author
Bruno Blanch, Luis Enrique  
dc.contributor.author
Talevi, Alan  
dc.date.available
2018-08-22T16:28:43Z  
dc.date.issued
2017-06  
dc.identifier.citation
Gantner, Melisa Edith; Alberca, Lucas Nicolás; Mercader, Andrew Gustavo; Bruno Blanch, Luis Enrique; Talevi, Alan; Integrated application of enhanced replacement method and ensemble learning for the prediction of BCRP/ABCG2 substrates; Bentham Science Publishers; Current Bioinformatics; 12; 3; 6-2017; 239-248  
dc.identifier.issn
1574-8936  
dc.identifier.uri
http://hdl.handle.net/11336/56547  
dc.description.abstract
Background: Breast Cancer Resistance Protein (BCRP or ABCG2) is a polyspecific efflux transporter which belongs to the ATP-binding Cassette superfamily. Up-regulation of BCRP is associated to multi-drug resistance in a number of conditions, e.g. cancer and epilepsy. Recent proteomic studies show that high expression levels of BCRP are found in healthy human intestine and at the blood-brain barrier, limiting the absorption and brain distribution of its substrates. Therefore, the early recognition of BCRP substrates seems to be crucial in the early phase of drug discovery. Objective: The development of computational models that allow the early detection of BCRP substrates and non-substrates. Method: We have jointly applied the Enhanced Replacement Method and ensemble learning approaches to obtain combinations of 2D linear classifiers capable of discriminating among substrates and nonsubstrates of the wild type human BCRP. Results: The ensemble learning approach combining the 10-Enhanced Replacement Method best individual models obtained through MAX Operator displayed the best ability to discriminate between BCRP substrates and non-substrates across all the validation sets/libraries used. Conclusion: The best model ensemble obtained outperforms previously reported 2D linear classifiers, showing the ability of the Enhanced Replacement Method and ensemble learning schemes to optimize the performance of individual models. This is the first application of the Enhanced Replacement Method to solve classification problems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Bentham Science Publishers  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Abc Transporters  
dc.subject
Abcg2  
dc.subject
Breast Cancer Resistance Protein  
dc.subject
Enhanced Replacement Method  
dc.subject
Ensemble Learning  
dc.subject
Linear Classifiers  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Integrated application of enhanced replacement method and ensemble learning for the prediction of BCRP/ABCG2 substrates  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-08-21T18:37:09Z  
dc.journal.volume
12  
dc.journal.number
3  
dc.journal.pagination
239-248  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Oak Park  
dc.description.fil
Fil: Gantner, Melisa Edith. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Alberca, Lucas Nicolás. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Mercader, Andrew Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.description.fil
Fil: Bruno Blanch, Luis Enrique. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina  
dc.description.fil
Fil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Current Bioinformatics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2174/1574893611666151109193016  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.eurekaselect.com/node/136755/article