Artículo
Feature Learning applied to the Estimation of Tensile Strength at Break in Polymeric Material Design
Cravero, Fiorella
; Martínez, María Jimena
; Vazquez, Gustavo Esteban
; Diaz, Monica Fatima
; Ponzoni, Ignacio
Fecha de publicación:
20/11/2016
Editorial:
De Gruyter
Revista:
Journal of Integrative Bioinformatics
ISSN:
1613-4516
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Several feature extraction approaches for QSPR modelling in Cheminformatics are discussed in this paper. In particular, this work is focused on the use of these strategies for predicting mechanical properties, which are relevant for the design of polymeric materials. The methodology analysed in this study employs a feature learning method that uses a quantification process of 2D structural characterization of materials with the autoencoder method. Alternative QSPR models inferred for tensile strength at break (a well-known mechanical property of polymers) are presented. These alternative models are contrasted to QSPR models obtained by feature selection technique by using accuracy measures and a visual analytic tool. The results show evidence about the benefits of combining feature learning approaches with feature selection methods for the design of QSPR models.
Palabras clave:
Cheminformatics
,
Bioinformatics
,
Qspr Modelling
,
Machine Learning
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Cravero, Fiorella; Martínez, María Jimena; Vazquez, Gustavo Esteban; Diaz, Monica Fatima; Ponzoni, Ignacio; Feature Learning applied to the Estimation of Tensile Strength at Break in Polymeric Material Design; De Gruyter; Journal of Integrative Bioinformatics; 13; 2; 20-11-2016; 286-301
Compartir
Altmétricas