Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Tackling the issue of confined chemical space with AI-based de novo drug design and molecular optimization

Talevi, AlanIcon ; Alberca, Lucas NicolásIcon ; Bellera, Carolina LeticiaIcon
Fecha de publicación: 09/2025
Editorial: Taylor & Francis
Revista: Expert Opinion On Drug Discovery
ISSN: 1746-0441
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

IntroductionThe search for molecular novelty frequently collides with the fact that drug candidates with the best translational prospects are confined to – or concentrated in – defined regions of chemical space. The new possibilities of AI, particularly retrosynthesis prediction and generative AI, allow for the automated or semi-automated exploration of less restricted and unexplored areas of chemical space.Areas coveredThe notion of novelty in drug discovery is discussed, and representative examples of AI-guided de novo drug design, optimization, and retrosynthesis prediction are presented, with a focus on reports on open-source tools published in the last 3 years (2022–2025). Scopus was used to search relevant literature.Expert opinionModern deep learning architectures have been adapted for the de novo design and molecular optimization. These technologies, and especially those based on conditional generation, will possibly have a great impact on expanding the regions of chemical space that are exploited therapeutically. However, there are some persistent challenges in the field that are gradually being addressed, including how to assess the synthetic accessibility of designed molecules without compromising the generation of structural novelty; the need to increase the availability and diversity of benchmark datasets; and the relative scarcity of large-scale experimental validation of the designs.
Palabras clave: DE NOVO DRUG DISCOVERY , GENERATIVE ARTIFICIAL INTELLIGENCE , GEN AI , CONFINED CHEMICAL SPACES , CHEMICAL NOVELTY , PATENTABILITY , RETROSYNTHESIS PREDICTION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.423Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/270824
URL: https://www.tandfonline.com/doi/full/10.1080/17460441.2025.2555275
DOI: http://dx.doi.org/10.1080/17460441.2025.2555275
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Talevi, Alan; Alberca, Lucas Nicolás; Bellera, Carolina Leticia; Tackling the issue of confined chemical space with AI-based de novo drug design and molecular optimization; Taylor & Francis; Expert Opinion On Drug Discovery; 9-2025; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES