Mostrar el registro sencillo del ítem
dc.contributor.author
Talevi, Alan
dc.contributor.author
Alberca, Lucas Nicolás
dc.contributor.author
Bellera, Carolina Leticia
dc.date.available
2025-09-11T13:56:18Z
dc.date.issued
2025-09
dc.identifier.citation
Talevi, Alan; Alberca, Lucas Nicolás; Bellera, Carolina Leticia; Tackling the issue of confined chemical space with AI-based de novo drug design and molecular optimization; Taylor & Francis; Expert Opinion On Drug Discovery; 9-2025; 1-14
dc.identifier.issn
1746-0441
dc.identifier.uri
http://hdl.handle.net/11336/270824
dc.description.abstract
IntroductionThe search for molecular novelty frequently collides with the fact that drug candidates with the best translational prospects are confined to – or concentrated in – defined regions of chemical space. The new possibilities of AI, particularly retrosynthesis prediction and generative AI, allow for the automated or semi-automated exploration of less restricted and unexplored areas of chemical space.Areas coveredThe notion of novelty in drug discovery is discussed, and representative examples of AI-guided de novo drug design, optimization, and retrosynthesis prediction are presented, with a focus on reports on open-source tools published in the last 3 years (2022–2025). Scopus was used to search relevant literature.Expert opinionModern deep learning architectures have been adapted for the de novo design and molecular optimization. These technologies, and especially those based on conditional generation, will possibly have a great impact on expanding the regions of chemical space that are exploited therapeutically. However, there are some persistent challenges in the field that are gradually being addressed, including how to assess the synthetic accessibility of designed molecules without compromising the generation of structural novelty; the need to increase the availability and diversity of benchmark datasets; and the relative scarcity of large-scale experimental validation of the designs.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DE NOVO DRUG DISCOVERY
dc.subject
GENERATIVE ARTIFICIAL INTELLIGENCE
dc.subject
GEN AI
dc.subject
CONFINED CHEMICAL SPACES
dc.subject
CHEMICAL NOVELTY
dc.subject
PATENTABILITY
dc.subject
RETROSYNTHESIS PREDICTION
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Tackling the issue of confined chemical space with AI-based de novo drug design and molecular optimization
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-09-11T12:04:17Z
dc.journal.pagination
1-14
dc.journal.pais
Reino Unido
dc.description.fil
Fil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.description.fil
Fil: Alberca, Lucas Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina
dc.description.fil
Fil: Bellera, Carolina Leticia. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.journal.title
Expert Opinion On Drug Discovery
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/17460441.2025.2555275
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/17460441.2025.2555275
Archivos asociados