Mostrar el registro sencillo del ítem

dc.contributor.author
Talevi, Alan  
dc.contributor.author
Alberca, Lucas Nicolás  
dc.contributor.author
Bellera, Carolina Leticia  
dc.date.available
2025-09-11T13:56:18Z  
dc.date.issued
2025-09  
dc.identifier.citation
Talevi, Alan; Alberca, Lucas Nicolás; Bellera, Carolina Leticia; Tackling the issue of confined chemical space with AI-based de novo drug design and molecular optimization; Taylor & Francis; Expert Opinion On Drug Discovery; 9-2025; 1-14  
dc.identifier.issn
1746-0441  
dc.identifier.uri
http://hdl.handle.net/11336/270824  
dc.description.abstract
IntroductionThe search for molecular novelty frequently collides with the fact that drug candidates with the best translational prospects are confined to – or concentrated in – defined regions of chemical space. The new possibilities of AI, particularly retrosynthesis prediction and generative AI, allow for the automated or semi-automated exploration of less restricted and unexplored areas of chemical space.Areas coveredThe notion of novelty in drug discovery is discussed, and representative examples of AI-guided de novo drug design, optimization, and retrosynthesis prediction are presented, with a focus on reports on open-source tools published in the last 3 years (2022–2025). Scopus was used to search relevant literature.Expert opinionModern deep learning architectures have been adapted for the de novo design and molecular optimization. These technologies, and especially those based on conditional generation, will possibly have a great impact on expanding the regions of chemical space that are exploited therapeutically. However, there are some persistent challenges in the field that are gradually being addressed, including how to assess the synthetic accessibility of designed molecules without compromising the generation of structural novelty; the need to increase the availability and diversity of benchmark datasets; and the relative scarcity of large-scale experimental validation of the designs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DE NOVO DRUG DISCOVERY  
dc.subject
GENERATIVE ARTIFICIAL INTELLIGENCE  
dc.subject
GEN AI  
dc.subject
CONFINED CHEMICAL SPACES  
dc.subject
CHEMICAL NOVELTY  
dc.subject
PATENTABILITY  
dc.subject
RETROSYNTHESIS PREDICTION  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Tackling the issue of confined chemical space with AI-based de novo drug design and molecular optimization  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-09-11T12:04:17Z  
dc.journal.pagination
1-14  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Alberca, Lucas Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina  
dc.description.fil
Fil: Bellera, Carolina Leticia. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.journal.title
Expert Opinion On Drug Discovery  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/17460441.2025.2555275  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/17460441.2025.2555275