Capítulo de Libro
Clustering of Small Molecules
Título del libro: Computer-Aided and Machine Learning-Driven Drug Design: From Theory to Applications
Fecha de publicación:
2025
Editorial:
Springer
ISBN:
978-3-031-76718-0
Idioma:
Inglés
Clasificación temática:
Resumen
Clustering of small molecules finds a diversity of applications in chemistry and, in particular, in the fields of cheminformatics and drug discovery. It may be used directly as an unsupervised machine-learning strategy to identify existing patterns in a chemical data set or libraries or integrated into supervised machine-learning studies to partition a sample of compounds into representative subsamples (e.g., training and validation data). It may also be applied to select which in silico hits from a virtual screening campaign will be submitted to experimental confirmation, or to define which hits emerging from a wet screening campaign will be prioritized for further development or characterization. Here, we review general strategies to validate the output of a clustering algorithm and discuss current challenges and possible future directions in the field of small molecule clustering.
Archivos asociados
Licencia
Identificadores
Colecciones
Capítulos de libros(CCT - LA PLATA)
Capítulos de libros de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Capítulos de libros de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Talevi, Alan; Alberca, Lucas Nicolás; Bellera, Carolina Leticia; Clustering of Small Molecules; Springer; 2025; 109-129
Compartir