Mostrar el registro sencillo del ítem

dc.contributor.author
Talevi, Alan  
dc.contributor.author
Alberca, Lucas Nicolás  
dc.contributor.author
Bellera, Carolina Leticia  
dc.date.available
2025-07-07T15:20:46Z  
dc.date.issued
2025  
dc.identifier.citation
Talevi, Alan; Alberca, Lucas Nicolás; Bellera, Carolina Leticia; Clustering of Small Molecules; Springer; 2025; 109-129  
dc.identifier.isbn
978-3-031-76718-0  
dc.identifier.uri
http://hdl.handle.net/11336/265453  
dc.description.abstract
Clustering of small molecules finds a diversity of applications in chemistry and, in particular, in the fields of cheminformatics and drug discovery. It may be used directly as an unsupervised machine-learning strategy to identify existing patterns in a chemical data set or libraries or integrated into supervised machine-learning studies to partition a sample of compounds into representative subsamples (e.g., training and validation data). It may also be applied to select which in silico hits from a virtual screening campaign will be submitted to experimental confirmation, or to define which hits emerging from a wet screening campaign will be prioritized for further development or characterization. Here, we review general strategies to validate the output of a clustering algorithm and discuss current challenges and possible future directions in the field of small molecule clustering.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CLUSTERING  
dc.subject
UNSUPERVISED MACHINE LEARNING  
dc.subject
MULTI-VIEW CLUSTERING  
dc.subject
SUBSPACE CLUSTERING  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Clustering of Small Molecules  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2025-07-03T12:44:28Z  
dc.journal.pagination
109-129  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Alberca, Lucas Nicolás. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Bellera, Carolina Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-031-76718-0_5  
dc.conicet.paginas
559  
dc.source.titulo
Computer-Aided and Machine Learning-Driven Drug Design: From Theory to Applications