Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Capítulo de Libro

Reinforcement Learning Techniques for MPPT Control of PV System Under Climatic Changes

Título del libro: Applications of Artificial Intelligence in Planning and Operation of Smart Grids

Trimboli, Maximiliano DanielIcon ; Avila, Luis OmarIcon ; Rahmani Andebili, Mehdi
Otros responsables: Rahmani Andebili, Mehdi
Fecha de publicación: 2022
Editorial: Springer
ISBN: 978-3-030-94522-0
Idioma: Inglés
Clasificación temática:
Ciencias de la Computación

Resumen

Photovoltaic (PV) systems have become a potential solution to global problems like pollution and climate changes resulting from the excessive use of fossil fuels. This kind of system can respond to the constant increase in the electric energy demand and the need for energy supply in rural or hard-to-reach areas. However, as the energy efficiency of PV systems is low, there exists a necessity to maximize the output power so that it reaches the maximum power point (MPP). Different Maximum Power Point Tracking (MPPT) techniques can be used to increase the efficiency of PV systems. Nevertheless, climatic variations make their task difficult to achieve. This work proposes the use of reinforcement learning (RL) techniques for solving the MPPT problem of a PV system under different conditions of temperature and solar irradiance. RL techniques do not require information of a model that describes the behavior of the system with its environment. They only make use of the information of the possible states to visit and actions to take and updates a utility function according to how good the last action taken was. To validate the effectiveness of the proposed algorithms, several experiments were performed in a simulated environment. The obtained results show good performances with stable behaviors, proving to be practical for the control of photovoltaic systems.
Palabras clave: PHOTOVOLTAIC SYSTEMS , MPPT , REINFORCEMENT LEARNING , VARIABILITY
Ver el registro completo
 
Archivos asociados
Tamaño: 2.522Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/261543
URL: https://link.springer.com/chapter/10.1007/978-3-030-94522-0_2
Colecciones
Capítulos de libros(CCT - SAN LUIS)
Capítulos de libros de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Trimboli, Maximiliano Daniel; Avila, Luis Omar; Rahmani Andebili, Mehdi; Reinforcement Learning Techniques for MPPT Control of PV System Under Climatic Changes; Springer; 19; 2022; 31-73
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES