Mostrar el registro sencillo del ítem
dc.contributor.author
Trimboli, Maximiliano Daniel

dc.contributor.author
Avila, Luis Omar

dc.contributor.author
Rahmani Andebili, Mehdi
dc.contributor.other
Rahmani Andebili, Mehdi
dc.date.available
2025-05-14T13:45:25Z
dc.date.issued
2022
dc.identifier.citation
Trimboli, Maximiliano Daniel; Avila, Luis Omar; Rahmani Andebili, Mehdi; Reinforcement Learning Techniques for MPPT Control of PV System Under Climatic Changes; Springer; 19; 2022; 31-73
dc.identifier.isbn
978-3-030-94522-0
dc.identifier.uri
http://hdl.handle.net/11336/261543
dc.description.abstract
Photovoltaic (PV) systems have become a potential solution to global problems like pollution and climate changes resulting from the excessive use of fossil fuels. This kind of system can respond to the constant increase in the electric energy demand and the need for energy supply in rural or hard-to-reach areas. However, as the energy efficiency of PV systems is low, there exists a necessity to maximize the output power so that it reaches the maximum power point (MPP). Different Maximum Power Point Tracking (MPPT) techniques can be used to increase the efficiency of PV systems. Nevertheless, climatic variations make their task difficult to achieve. This work proposes the use of reinforcement learning (RL) techniques for solving the MPPT problem of a PV system under different conditions of temperature and solar irradiance. RL techniques do not require information of a model that describes the behavior of the system with its environment. They only make use of the information of the possible states to visit and actions to take and updates a utility function according to how good the last action taken was. To validate the effectiveness of the proposed algorithms, several experiments were performed in a simulated environment. The obtained results show good performances with stable behaviors, proving to be practical for the control of photovoltaic systems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
PHOTOVOLTAIC SYSTEMS
dc.subject
MPPT
dc.subject
REINFORCEMENT LEARNING
dc.subject
VARIABILITY
dc.subject.classification
Ciencias de la Computación

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Reinforcement Learning Techniques for MPPT Control of PV System Under Climatic Changes
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/bookPart
dc.type
info:ar-repo/semantics/parte de libro
dc.date.updated
2025-05-14T12:47:44Z
dc.journal.volume
19
dc.journal.pagination
31-73
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Trimboli, Maximiliano Daniel. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
dc.description.fil
Fil: Avila, Luis Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Informática. Laboratorio Investigación y Desarrollo en Inteligencia Computacional; Argentina
dc.description.fil
Fil: Rahmani Andebili, Mehdi. University of Montana; Estados Unidos
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-030-94522-0_2
dc.conicet.paginas
136
dc.source.titulo
Applications of Artificial Intelligence in Planning and Operation of Smart Grids
Archivos asociados