Artículo
Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties
Fecha de publicación:
09/2013
Editorial:
Elsevier
Revista:
Engineering Applications Of Artificial Intelligence
ISSN:
0952-1976
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper addresses the problem of adaptive neural sliding mode control for a class of multi-input multi-output nonlinear system. The control strategy is an inverse nonlinear controller combined with an adaptive neural network with sliding mode control using an on-line learning algorithm. The adaptive neural network with sliding mode control acts as a compensator for a conventional inverse controller in order to improve the control performance when the system is affected by variations in its entire structure (kinematics and dynamics). The controllers are obtained by using Lyapunov's stability theory. Experimental results of a case study show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties; Elsevier; Engineering Applications Of Artificial Intelligence; 26; 10; 9-2013; 2251-2259
Compartir
Altmétricas