Mostrar el registro sencillo del ítem

dc.contributor.author
Rossomando, Francisco Guido  
dc.contributor.author
Soria, Carlos Miguel  
dc.contributor.author
Carelli Albarracin, Ricardo Oscar  
dc.date.available
2017-09-28T19:49:20Z  
dc.date.issued
2013-09  
dc.identifier.citation
Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties; Elsevier; Engineering Applications Of Artificial Intelligence; 26; 10; 9-2013; 2251-2259  
dc.identifier.issn
0952-1976  
dc.identifier.uri
http://hdl.handle.net/11336/25357  
dc.description.abstract
This paper addresses the problem of adaptive neural sliding mode control for a class of multi-input multi-output nonlinear system. The control strategy is an inverse nonlinear controller combined with an adaptive neural network with sliding mode control using an on-line learning algorithm. The adaptive neural network with sliding mode control acts as a compensator for a conventional inverse controller in order to improve the control performance when the system is affected by variations in its entire structure (kinematics and dynamics). The controllers are obtained by using Lyapunov's stability theory. Experimental results of a case study show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Nonlinear Systems  
dc.subject
Neural Networks  
dc.subject
Mimo Systems  
dc.subject
Sliding Mode Control  
dc.subject
Radial Basis Functions  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-09-28T18:15:25Z  
dc.journal.volume
26  
dc.journal.number
10  
dc.journal.pagination
2251-2259  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Provincia de San Juan; Argentina. Gobierno de la Provincia de San Juan. Secretaria de Estado de Ciencia, Tecnología e Innovación. Subsecretaria de Promoción de la Actividad Científica; Argentina  
dc.description.fil
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.journal.title
Engineering Applications Of Artificial Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0952197613001656  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.engappai.2013.08.008