Mostrar el registro sencillo del ítem
dc.contributor.author
Rossomando, Francisco Guido
dc.contributor.author
Soria, Carlos Miguel
dc.contributor.author
Carelli Albarracin, Ricardo Oscar
dc.date.available
2017-09-28T19:49:20Z
dc.date.issued
2013-09
dc.identifier.citation
Rossomando, Francisco Guido; Soria, Carlos Miguel; Carelli Albarracin, Ricardo Oscar; Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties; Elsevier; Engineering Applications Of Artificial Intelligence; 26; 10; 9-2013; 2251-2259
dc.identifier.issn
0952-1976
dc.identifier.uri
http://hdl.handle.net/11336/25357
dc.description.abstract
This paper addresses the problem of adaptive neural sliding mode control for a class of multi-input multi-output nonlinear system. The control strategy is an inverse nonlinear controller combined with an adaptive neural network with sliding mode control using an on-line learning algorithm. The adaptive neural network with sliding mode control acts as a compensator for a conventional inverse controller in order to improve the control performance when the system is affected by variations in its entire structure (kinematics and dynamics). The controllers are obtained by using Lyapunov's stability theory. Experimental results of a case study show that the proposed method is effective in controlling dynamic systems with unexpected large uncertainties.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Nonlinear Systems
dc.subject
Neural Networks
dc.subject
Mimo Systems
dc.subject
Sliding Mode Control
dc.subject
Radial Basis Functions
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-09-28T18:15:25Z
dc.journal.volume
26
dc.journal.number
10
dc.journal.pagination
2251-2259
dc.journal.pais
Países Bajos
dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Rossomando, Francisco Guido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Provincia de San Juan; Argentina. Gobierno de la Provincia de San Juan. Secretaria de Estado de Ciencia, Tecnología e Innovación. Subsecretaria de Promoción de la Actividad Científica; Argentina
dc.description.fil
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.journal.title
Engineering Applications Of Artificial Intelligence
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0952197613001656
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.engappai.2013.08.008
Archivos asociados