Mostrar el registro sencillo del ítem

dc.contributor.author
Viacava, Gabriela Elena  
dc.contributor.author
Gallo, Blanca  
dc.contributor.author
Berrueta, Luis Angel  
dc.contributor.author
Alonso Salces, Rosa Maria  
dc.contributor.other
Crenshaw, Larry D.  
dc.date.available
2024-12-26T13:46:26Z  
dc.date.issued
2022  
dc.identifier.citation
Viacava, Gabriela Elena; Gallo, Blanca; Berrueta, Luis Angel; Alonso Salces, Rosa Maria; 1H-NMR Fingerprinting and Pattern Recognition Stepwise Strategy for Quality and Authenticity Control of Olive Oil; Nova Science Publishers; 2022; 75-137  
dc.identifier.isbn
979-8-88697-274-0  
dc.identifier.uri
http://hdl.handle.net/11336/251309  
dc.description.abstract
The high price of olive oil, its distinctive sensory profile and its reputation as a healthy source of dietary fats make olive oil a target for fraud. The most common types of olive oil fraud are illegal blending with other vegetable oils (VOs) or low-quality olive oils, deliberate mislabelling of less expensive classes of olive oils, other VOs or their blends with olive oils, and mislabelling of geographical origin or Protected Designation of Origin (PDO) declaration. Olive oil adulteration, being one of the biggest financial frauds in the agricultural sector, evidenced the need to update and harmonize analytical methods for quality and authenticity control of olive oil. A novel stepwise strategy based on the 1H-NMR fingerprint of edible oils and multivariate data analysis has been developed in order to assure the authenticity and traceability of olive oils and their declared blends with VOs. This approach provides an analytical tool to detect fraud when olive oil is illegally blended with VOs or a ?legal? blend is falsely labelled respect to the botanical nature of the oils mixed and/or the percentage of each oil in the declared mixture. 1H-NMR spectral data of olive and virgin olive oils and their mixtures with the VOs most commonly used to make blends, i.e., sunflower, high oleic sunflower, corn, virgin and refined avocado, virgin and refined hazelnut, soybean oil, refined palm olein and desterolised high oleic sunflower oils, was analysed by pattern recognition techniques to develop multivariate classification and regression models, which are organised in a decision tree to afford a stepwise strategy for the aimed purposes. Partial least squares discriminant analysis (PLS-DA) provided satisfactory, stable and robust binary classification models with recognition and prediction abilities of 90100% of correct hits for most of the models to distinguish the type of olive oil and identify the VO in the blend. Partial least squares regression (PLS-R) afforded regression models with excellent precisions and acceptable accuracies to determine the percentage of VO in the mixture. The effectiveness of the proposed strategy was tested with blind samples, the results of which were satisfactory and confirmed its potential to support regulations and control bodies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nova Science Publishers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
OLIVE OIL  
dc.subject
SEED OIL  
dc.subject
VEGETABLE OIL  
dc.subject
BLEND  
dc.subject
NMR  
dc.subject
MULTIVARIATE DATA ANALYSIS  
dc.subject
DECISION TREE  
dc.subject
ADULTERATION  
dc.subject
AUTHENTICATION  
dc.subject.classification
Química Analítica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
1H-NMR Fingerprinting and Pattern Recognition Stepwise Strategy for Quality and Authenticity Control of Olive Oil  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2023-08-08T12:47:56Z  
dc.journal.pagination
75-137  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Viacava, Gabriela Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Ingeniería Química. Grupo de Investigación en Ingeniería en Alimentos; Argentina  
dc.description.fil
Fil: Gallo, Blanca. Universidad del País Vasco; España  
dc.description.fil
Fil: Berrueta, Luis Angel. Universidad del País Vasco; España  
dc.description.fil
Fil: Alonso Salces, Rosa Maria. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Instituto de Investigaciones En Sanidad Produccion y Ambiente. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Instituto de Investigaciones En Sanidad Produccion y Ambiente.; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://novapublishers.com/shop/chemometrics-advances-in-applications-and-research/  
dc.conicet.paginas
280  
dc.source.titulo
Chemometrics: Advances in Applications and Research