Mostrar el registro sencillo del ítem

dc.contributor.author
Fernandez Leon, Jose Alberto  
dc.contributor.author
Acosta, Gerardo Gabriel  
dc.contributor.author
Mayosky, Miguel Angel  
dc.contributor.author
Ibañez, Oscar C.  
dc.contributor.other
Porto Pazos, Ana B.  
dc.contributor.other
Pazos Sierra, Alejandro  
dc.contributor.other
Buño Buceta, Washington  
dc.date.available
2024-08-12T16:34:36Z  
dc.date.issued
2009  
dc.identifier.citation
Fernandez Leon, Jose Alberto; Acosta, Gerardo Gabriel; Mayosky, Miguel Angel; Ibañez, Oscar C.; A Biologically Inspired Autonomous Robot Control Based on Behavioural Coordination in Evolutionary Robotics; Idea; 2009; 107-129  
dc.identifier.isbn
978-1-59904-996-0  
dc.identifier.uri
http://hdl.handle.net/11336/242301  
dc.description.abstract
This work is intended to give an overview of technologies, developed from an artificial intelligence standpoint, devised to face the different planning and control problems involved in trajectory generation for mobile robots. The purpose of this analysis is to give a current context to present the Evolutionary Robotics approach to the problem, which is now being considered as a feasible methodology to develop mobile robots for solving real life problems. This chapter also show the authors’ experiences on related case studies, which are briefly described (a fuzzy logic based path planner for a terrestrial mobile robot, and a knowledge-based system for desired trajectory generation in the Geosub underwater autonomous vehicle). The development of different behaviours within a path generator, built with Evolutionary Robotics concepts, is tested in a Khepera© robot and analyzed in detail. Finally, behaviour coordination based on the artificial immune system metaphor is evaluated for the same application.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Idea  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MOBILE ROBOTS  
dc.subject
EVOLUTIVE ROBOTICS  
dc.subject
BEHAVIOURAL ROBOTICS  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A Biologically Inspired Autonomous Robot Control Based on Behavioural Coordination in Evolutionary Robotics  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/bookPart  
dc.type
info:ar-repo/semantics/parte de libro  
dc.date.updated
2024-07-10T14:53:21Z  
dc.journal.pagination
107-129  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Hershey  
dc.description.fil
Fil: Fernandez Leon, Jose Alberto. Universidad Nacional del Centro de la Pcia.de Bs.as.. Facultad de Cs.exactas. Departamento de Sistemas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.description.fil
Fil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina  
dc.description.fil
Fil: Mayosky, Miguel Angel. Universidad Nacional de La Plata; Argentina  
dc.description.fil
Fil: Ibañez, Oscar C.. Universitat de les Illes Balears; Estados Unidos  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.igi-global.com/chapter/biologically-inspired-autonomous-robot-control/4975  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4018/978-1-59904-996-0.ch007  
dc.conicet.paginas
460  
dc.source.titulo
Advancing Artificial Intelligence through Biological Process Applications