Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Public Decision Policy for Controlling COVID-19 Outbreaks Using Control System Engineering

Patiño, Héctor Daniel; Pucheta, Julián AntonioIcon ; Rivero, Cristian Rodríguez; Tosetti Sanz, Santiago RamonIcon
Fecha de publicación: 12/2023
Editorial: MDPI
Revista: COVID
ISSN: 2673-8112
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Sistemas de Automatización y Control

Resumen

This work is a response to the appeal of various international health organizations and the Automatic Control Community for collaboration in addressing Coronavirus/COVID-19 challenges during the initial stages of the pandemic. Specifically, this study presents scientific evidence supporting the efficacy of three primary non-pharmacological strategies for pandemic mitigation. We propose a control system to aid in formulating a public decision policy aimed at managing the spread of COVID-19 caused by the SARS-CoV-2 virus, commonly known as coronavirus. The primary objective is to prevent overwhelming healthcare systems by averting the saturation of intensive care units (ICUs). In the context of COVID-19, understanding the peak infection rate and its time delay is crucial for preparing healthcare infrastructure and ensuring an adequate supply of intensive care units equipped with automatic ventilators. While it is widely recognized that public policies encompassing confinement and social distancing can flatten the epidemiological curve and provide time to bolster healthcare resources, there is a dearth of studies examining this pivotal issue from the perspective of control system theory. In this study, we introduce a control system founded on three prevailing non-pharmacological tools for epidemic and pandemic mitigation: social distancing, confinement, and population-wide testing and isolation in regions experiencing community transmission. Our analysis and control system design rely on the susceptible-exposed?infected?recovered?deceased (SEIRD) mathematical model, which describes the temporal dynamics of a pandemic, tailored in this research to account for the temporal and spatial characteristics of SARS-CoV-2 behavior. This model incorporates the influence of conducting tests with subsequent population isolation. An On?off control strategy is analyzed, and a proportional?integral?derivative (PID) controller is proposed to generate a sequence of public policy decisions. The proposed control system employs the required number of critical beds and ICUs as feedback signals and compares these with the available bed capacity to generate an error signal, which is utilized as input for the PID controller. The control actions outlined involve five phases of ?Social Distancing and Confinement? (SD&C) to be implemented by governmental authorities. Consequently, the control system generates a policy sequence for SD&C, with applications occurring on a weekly or biweekly basis. The simulation results underscore the favorable impact of these three mitigation strategies against the coronavirus, illustrating their efficacy in controlling the outbreak and thereby mitigating the risk of healthcare system collapse.
Palabras clave: EPIDEMIC CONTROL , COVID-19 , CONTROL AND MODELLING , PID CONTROL , ON?OFF CONTROL , PUBLIC POLICY DESIGN , HEALTHCARE SYSTEM CAPACITY , SOCIAL DISTANCING AND CONFINEMENT
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 8.643Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/231466
URL: https://www.mdpi.com/2673-8112/4/1/5
DOI: http://dx.doi.org/10.3390/covid4010005
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Citación
Patiño, Héctor Daniel; Pucheta, Julián Antonio; Rivero, Cristian Rodríguez; Tosetti Sanz, Santiago Ramon; Public Decision Policy for Controlling COVID-19 Outbreaks Using Control System Engineering; MDPI ; COVID; 4; 12-2023; 44-62
Compartir
Altmétricas
 

Items relacionados

Mostrando titulos relacionados por título, autor y tema.

  • Artículo Control estatal de vendedores callejeros en Río de Janeiro y en la Ciudad de Buenos Aires: una aproximación comparativa a la relación entre vendedores y agentes de control
    Belcic, Sofía (Universidade Federal Fluminense, 2020-12)
  • Artículo Fronteras de permanencia, controles e infancias: ¿El espacio educativo en Chile como extensión del control migratorio?
    Alvites Baiadera, Angélica Paola ; Joiko, Sara; Collazos, Milena (Universidad Complutense de Madrid, 2023-06)
  • Artículo Discrete-time inverse optimal control for a reaction wheel pendulum: a passivity-based control approach
    Montoya Giraldo, Oscar Danilo; Gil González, Walter; Serra, Federico Martin (Universidad Industrial de Santander, 2020-09)
Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES