Mostrar el registro sencillo del ítem
dc.contributor.author
Prada Gori, Denis Nihuel
dc.contributor.author
Llanos, Manuel
dc.contributor.author
Bellera, Carolina Leticia
dc.contributor.author
Talevi, Alan
dc.contributor.author
Alberca, Lucas Nicolás
dc.date.available
2024-01-11T14:10:01Z
dc.date.issued
2022-06
dc.identifier.citation
Prada Gori, Denis Nihuel; Llanos, Manuel; Bellera, Carolina Leticia; Talevi, Alan; Alberca, Lucas Nicolás; iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules; American Chemical Society; Journal of Chemical Information and Modeling; 62; 12; 6-2022; 2987-2998
dc.identifier.issn
1549-9596
dc.identifier.uri
http://hdl.handle.net/11336/223388
dc.description.abstract
The clustering of small molecules implies the organization of a group of chemical structures into smaller subgroups with similar features. Clustering has important applications to sample chemical datasets or libraries in a representative manner (e.g., to choose, from a virtual screening hit list, a chemically diverse subset of compounds to be submitted to experimental confirmation, or to split datasets into representative training and validation sets when implementing machine learning models). Most strategies for clustering molecules are based on molecular fingerprints and hierarchical clustering algorithms. Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). In a benchmarking exercise, the performance of both clustering methods has been examined across 29 datasets containing between 100 and 5000 small molecules, comparing these results with those given by two other well-known clustering methods, Ward and Butina. iRaPCA and SOMoC consistently showed the best performance across these 29 datasets, both in terms of within-cluster and between-cluster distances. Both iRaPCA and SOMoC have been implemented as free Web Apps and standalone applications, to allow their use to a wide audience within the scientific community.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.relation
https://ri.conicet.gov.ar/handle/11336/243803
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CLUSTERING
dc.subject
ALGORITHMS
dc.subject
SMALL MOLECULES
dc.subject.classification
Medicina Química
dc.subject.classification
Medicina Básica
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-01-10T12:06:34Z
dc.journal.volume
62
dc.journal.number
12
dc.journal.pagination
2987-2998
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington D.C
dc.description.fil
Fil: Prada Gori, Denis Nihuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina
dc.description.fil
Fil: Llanos, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina
dc.description.fil
Fil: Bellera, Carolina Leticia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina
dc.description.fil
Fil: Talevi, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina
dc.description.fil
Fil: Alberca, Lucas Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina
dc.journal.title
Journal of Chemical Information and Modeling
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jcim.2c00265
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jcim.2c00265
Archivos asociados