Artículo
iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules
Prada Gori, Denis Nihuel
; Llanos, Manuel
; Bellera, Carolina Leticia
; Talevi, Alan
; Alberca, Lucas Nicolás
Fecha de publicación:
06/2022
Editorial:
American Chemical Society
Revista:
Journal of Chemical Information and Modeling
ISSN:
1549-9596
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The clustering of small molecules implies the organization of a group of chemical structures into smaller subgroups with similar features. Clustering has important applications to sample chemical datasets or libraries in a representative manner (e.g., to choose, from a virtual screening hit list, a chemically diverse subset of compounds to be submitted to experimental confirmation, or to split datasets into representative training and validation sets when implementing machine learning models). Most strategies for clustering molecules are based on molecular fingerprints and hierarchical clustering algorithms. Here, two open-source in-house methodologies for clustering of small molecules are presented: iterative Random subspace Principal Component Analysis clustering (iRaPCA), an iterative approach based on feature bagging, dimensionality reduction, and K-means optimization; and Silhouette Optimized Molecular Clustering (SOMoC), which combines molecular fingerprints with the Uniform Manifold Approximation and Projection (UMAP) and Gaussian Mixture Model algorithm (GMM). In a benchmarking exercise, the performance of both clustering methods has been examined across 29 datasets containing between 100 and 5000 small molecules, comparing these results with those given by two other well-known clustering methods, Ward and Butina. iRaPCA and SOMoC consistently showed the best performance across these 29 datasets, both in terms of within-cluster and between-cluster distances. Both iRaPCA and SOMoC have been implemented as free Web Apps and standalone applications, to allow their use to a wide audience within the scientific community.
Palabras clave:
CLUSTERING
,
ALGORITHMS
,
SMALL MOLECULES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Prada Gori, Denis Nihuel; Llanos, Manuel; Bellera, Carolina Leticia; Talevi, Alan; Alberca, Lucas Nicolás; iRaPCA and SOMoC: Development and Validation of Web Applications for New Approaches for the Clustering of Small Molecules; American Chemical Society; Journal of Chemical Information and Modeling; 62; 12; 6-2022; 2987-2998
Compartir
Altmétricas
Items relacionados
Mostrando titulos relacionados por título, autor y tema.