Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Making the most effective use of available computational methods for drug repositioning

Prada Gori, Denis NihuelIcon ; Alberca, Lucas NicolásIcon ; Talevi, AlanIcon
Fecha de publicación: 04/2023
Editorial: Informa Healthcare
Revista: Expert Opinion On Drug Discovery
ISSN: 1746-0441
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

Introduction: Over the last decades, there has been substantial debate around the apparent drop in productivity in the pharmaceutical sector. The development of second or further medical uses for known drugs is a possible answer to expedite the development of new therapeutic solutions. Computational methods are among the main strategies for exploring drug repurposing opportunities in a systematic manner. Areas covered: This article reviews three general approximations to systematically discover new therapeutic uses for existing drugs: disease-, target-, and drug-centric approaches, along with some recently reported computational methods associated with them. Expert opinion: Computational methods are essential for organizing and analyzing the large volume of available biomedical data, which has grown exponentially in the era of big data. The clearest trend in the field involves the use of integrative approaches where different types of data are combined into multipartite networks. Every aspect of computer-guided drug repositioning has currently incorporated state-of-the-art machine learning tools to boost their pattern recognition and predictive capabilities. Remarkably, a majority of the recently reported platforms are publicly available as web apps or open-source software. The introduction of nationwide electronic health records provides invaluable real-world data to detect unknown relationships between approved drug treatments and diseases.
Palabras clave: CHEMOPROTEOMICS , COMPUTER-AIDED DRUG REPURPOSING , DRUG REPOSITIONING , DRUG REPURPOSING , ELECTRONIC HEALTH RECORDS , IN SILICO DRUG REPURPOSING , NETWORK ANALYSIS , PORTFOLIO MANAGEMENT
Ver el registro completo
 
Archivos asociados
Tamaño: 794.0Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/222181
URL: https://www.tandfonline.com/doi/full/10.1080/17460441.2023.2198700
DOI: http://dx.doi.org/10.1080/17460441.2023.2198700
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Prada Gori, Denis Nihuel; Alberca, Lucas Nicolás; Talevi, Alan; Making the most effective use of available computational methods for drug repositioning; Informa Healthcare; Expert Opinion On Drug Discovery; 18; 5; 4-2023; 495-503
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES