Mostrar el registro sencillo del ítem
dc.contributor.author
Prada Gori, Denis Nihuel
dc.contributor.author
Alberca, Lucas Nicolás
dc.contributor.author
Talevi, Alan
dc.date.available
2024-01-03T12:25:49Z
dc.date.issued
2023-04
dc.identifier.citation
Prada Gori, Denis Nihuel; Alberca, Lucas Nicolás; Talevi, Alan; Making the most effective use of available computational methods for drug repositioning; Informa Healthcare; Expert Opinion On Drug Discovery; 18; 5; 4-2023; 495-503
dc.identifier.issn
1746-0441
dc.identifier.uri
http://hdl.handle.net/11336/222181
dc.description.abstract
Introduction: Over the last decades, there has been substantial debate around the apparent drop in productivity in the pharmaceutical sector. The development of second or further medical uses for known drugs is a possible answer to expedite the development of new therapeutic solutions. Computational methods are among the main strategies for exploring drug repurposing opportunities in a systematic manner. Areas covered: This article reviews three general approximations to systematically discover new therapeutic uses for existing drugs: disease-, target-, and drug-centric approaches, along with some recently reported computational methods associated with them. Expert opinion: Computational methods are essential for organizing and analyzing the large volume of available biomedical data, which has grown exponentially in the era of big data. The clearest trend in the field involves the use of integrative approaches where different types of data are combined into multipartite networks. Every aspect of computer-guided drug repositioning has currently incorporated state-of-the-art machine learning tools to boost their pattern recognition and predictive capabilities. Remarkably, a majority of the recently reported platforms are publicly available as web apps or open-source software. The introduction of nationwide electronic health records provides invaluable real-world data to detect unknown relationships between approved drug treatments and diseases.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Informa Healthcare
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CHEMOPROTEOMICS
dc.subject
COMPUTER-AIDED DRUG REPURPOSING
dc.subject
DRUG REPOSITIONING
dc.subject
DRUG REPURPOSING
dc.subject
ELECTRONIC HEALTH RECORDS
dc.subject
IN SILICO DRUG REPURPOSING
dc.subject
NETWORK ANALYSIS
dc.subject
PORTFOLIO MANAGEMENT
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Making the most effective use of available computational methods for drug repositioning
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-12-27T17:42:30Z
dc.journal.volume
18
dc.journal.number
5
dc.journal.pagination
495-503
dc.journal.pais
Reino Unido
dc.journal.ciudad
London
dc.description.fil
Fil: Prada Gori, Denis Nihuel. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.description.fil
Fil: Alberca, Lucas Nicolás. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.description.fil
Fil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.journal.title
Expert Opinion On Drug Discovery
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/17460441.2023.2198700
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/17460441.2023.2198700
Archivos asociados