Mostrar el registro sencillo del ítem

dc.contributor.author
Prada Gori, Denis Nihuel  
dc.contributor.author
Alberca, Lucas Nicolás  
dc.contributor.author
Talevi, Alan  
dc.date.available
2024-01-03T12:25:49Z  
dc.date.issued
2023-04  
dc.identifier.citation
Prada Gori, Denis Nihuel; Alberca, Lucas Nicolás; Talevi, Alan; Making the most effective use of available computational methods for drug repositioning; Informa Healthcare; Expert Opinion On Drug Discovery; 18; 5; 4-2023; 495-503  
dc.identifier.issn
1746-0441  
dc.identifier.uri
http://hdl.handle.net/11336/222181  
dc.description.abstract
Introduction: Over the last decades, there has been substantial debate around the apparent drop in productivity in the pharmaceutical sector. The development of second or further medical uses for known drugs is a possible answer to expedite the development of new therapeutic solutions. Computational methods are among the main strategies for exploring drug repurposing opportunities in a systematic manner. Areas covered: This article reviews three general approximations to systematically discover new therapeutic uses for existing drugs: disease-, target-, and drug-centric approaches, along with some recently reported computational methods associated with them. Expert opinion: Computational methods are essential for organizing and analyzing the large volume of available biomedical data, which has grown exponentially in the era of big data. The clearest trend in the field involves the use of integrative approaches where different types of data are combined into multipartite networks. Every aspect of computer-guided drug repositioning has currently incorporated state-of-the-art machine learning tools to boost their pattern recognition and predictive capabilities. Remarkably, a majority of the recently reported platforms are publicly available as web apps or open-source software. The introduction of nationwide electronic health records provides invaluable real-world data to detect unknown relationships between approved drug treatments and diseases.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Informa Healthcare  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CHEMOPROTEOMICS  
dc.subject
COMPUTER-AIDED DRUG REPURPOSING  
dc.subject
DRUG REPOSITIONING  
dc.subject
DRUG REPURPOSING  
dc.subject
ELECTRONIC HEALTH RECORDS  
dc.subject
IN SILICO DRUG REPURPOSING  
dc.subject
NETWORK ANALYSIS  
dc.subject
PORTFOLIO MANAGEMENT  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Making the most effective use of available computational methods for drug repositioning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-27T17:42:30Z  
dc.journal.volume
18  
dc.journal.number
5  
dc.journal.pagination
495-503  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
London  
dc.description.fil
Fil: Prada Gori, Denis Nihuel. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Alberca, Lucas Nicolás. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.description.fil
Fil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.journal.title
Expert Opinion On Drug Discovery  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/17460441.2023.2198700  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/17460441.2023.2198700