Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multitask Deep Neural Networks for Ames Mutagenicity Prediction

Martínez, María JimenaIcon ; Sabando, María VirginiaIcon ; Soto, Axel JuanIcon ; Roca, Carlos; Requena Triguero, Carlos; Campillo, Nuria E.; Páez, Juan A.; Ponzoni, IgnacioIcon
Fecha de publicación: 06/09/2022
Editorial: American Chemical Society
Revista: Journal of Chemical Information and Modeling
ISSN: 1549-9596
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

The Ames mutagenicity test constitutes the most frequently used assay to estimate the mutagenic potential of drug candidates. While this test employs experimental results using various strains of Salmonella typhimurium, the vast majority of the published in silico models for predicting mutagenicity do not take into account the test results of the individual experiments conducted for each strain. Instead, such QSAR models are generally trained employing overall labels (i.e., mutagenic and nonmutagenic). Recently, neural-based models combined with multitask learning strategies have yielded interesting results in different domains, given their capabilities to model multitarget functions. In this scenario, we propose a novel neural-based QSAR model to predict mutagenicity that leverages experimental results from different strains involved in the Ames test by means of a multitask learning approach. To the best of our knowledge, the modeling strategy hereby proposed has not been applied to model Ames mutagenicity previously. The results yielded by our model surpass those obtained by single-task modeling strategies, such as models that predict the overall Ames label or ensemble models built from individual strains. For reproducibility and accessibility purposes, all source code and datasets used in our experiments are publicly available.
Palabras clave: Multitask
Ver el registro completo
 
Archivos asociados
Tamaño: 3.341Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/205289
DOI: http://dx.doi.org/10.1021/acs.jcim.2c00532
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Martínez, María Jimena; Sabando, María Virginia; Soto, Axel Juan; Roca, Carlos; Requena Triguero, Carlos; et al.; Multitask Deep Neural Networks for Ames Mutagenicity Prediction; American Chemical Society; Journal of Chemical Information and Modeling; 62; 24; 6-9-2022; 6342-6351
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES