Mostrar el registro sencillo del ítem
dc.contributor.author
del Pezzo, Leandro Martin
dc.contributor.author
Lombardi, Ariel Luis
dc.contributor.author
Martinez, Sandra Rita
dc.date.available
2017-07-10T17:47:41Z
dc.date.issued
2012-09
dc.identifier.citation
del Pezzo, Leandro Martin; Lombardi, Ariel Luis; Martinez, Sandra Rita; Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian; Siam Publications; Siam Journal On Numerical Analysis; 50; 5; 9-2012; 2497-2521
dc.identifier.issn
0036-1429
dc.identifier.uri
http://hdl.handle.net/11336/19994
dc.description.abstract
In this paper we construct an “interior penalty” discontinuous Galerkin method to approximate the minimizer of a variational problem related to the $p(x)$-Laplacian. The function $p:\Omega\to [p_1,p_2]$ is log-Hölder continuous and $1<p_1\leq p_2<\infty$. We prove that the minimizers of the discrete functional converge to the solution. We also make some numerical experiments in dimension one to compare this method with the conforming Galerkin method, in the case where $p_1$ is close to one. This example is motivated by its applications to image processing.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Siam Publications
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Variable Exponent Spaces
dc.subject
Minimization
dc.subject
Discontinuous Galerkin
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-07T14:43:31Z
dc.identifier.eissn
1095-7170
dc.journal.volume
50
dc.journal.number
5
dc.journal.pagination
2497-2521
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Lombardi, Ariel Luis. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Martinez, Sandra Rita. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Siam Journal On Numerical Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1137/110820324
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://epubs.siam.org/doi/abs/10.1137/110820324
Archivos asociados