Artículo
Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian
Fecha de publicación:
09/2012
Editorial:
Siam Publications
Revista:
Siam Journal On Numerical Analysis
ISSN:
0036-1429
e-ISSN:
1095-7170
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we construct an “interior penalty” discontinuous Galerkin method to approximate the minimizer of a variational problem related to the $p(x)$-Laplacian. The function $p:\Omega\to [p_1,p_2]$ is log-Hölder continuous and $1<p_1\leq p_2<\infty$. We prove that the minimizers of the discrete functional converge to the solution. We also make some numerical experiments in dimension one to compare this method with the conforming Galerkin method, in the case where $p_1$ is close to one. This example is motivated by its applications to image processing.
Palabras clave:
Variable Exponent Spaces
,
Minimization
,
Discontinuous Galerkin
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
del Pezzo, Leandro Martin; Lombardi, Ariel Luis; Martinez, Sandra Rita; Interior penalty discontinuous Galerkin FEM for the $p(x)$-Laplacian; Siam Publications; Siam Journal On Numerical Analysis; 50; 5; 9-2012; 2497-2521
Compartir
Altmétricas