Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Wearable Full-Body Inertial Measurement with Task Classification Using Deep Learning

Gaia Amorós, JeremíasIcon ; Orosco, Eugenio ConradoIcon ; Soria, Carlos MiguelIcon
Fecha de publicación: 01/2021
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Latin America Transactions
ISSN: 1548-0992
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

In this work, an embedded system is developed for the non-invasive sensing and storage of biomechanical variables of people. It takes advantage of wearable technology, distributing sensors in strategic points of the body, ergonomically and functionally. The results are verified by recording and analysing tasks performed by six subjects to form a database. These tasks include being stood up, sitting down or standing up from a chair, going upstairs and downstairs and walking. Additionally, a convolutional neural network is tested for offline task classification. This work aims to initiate a process that ends in assistance-oriented applications, for the development of better injury rehabilitation techniques and support for elder people, among others. In this way, it seeks to open a path towards an improvement in the living conditions of people with and without reduced activities of daily living capacity.
Palabras clave: DEEP LEARNING , EMBEDDED SYSTEMS , INERTIAL MEASUREMENT , NON-INVASIVE SENSING
Ver el registro completo
 
Archivos asociados
Tamaño: 974.8Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/183582
URL: https://ieeexplore.ieee.org/abstract/document/9423854
DOI: http://dx.doi.org/10.1109/TLA.2021.9423854
Colecciones
Articulos(INAUT)
Articulos de INSTITUTO DE AUTOMATICA
Citación
Gaia Amorós, Jeremías; Orosco, Eugenio Conrado; Soria, Carlos Miguel; Wearable Full-Body Inertial Measurement with Task Classification Using Deep Learning; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 19; 1; 1-2021; 115-123
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES