Mostrar el registro sencillo del ítem
dc.contributor.author
Gaia Amorós, Jeremías
dc.contributor.author
Orosco, Eugenio Conrado
dc.contributor.author
Soria, Carlos Miguel
dc.date.available
2023-01-05T17:58:56Z
dc.date.issued
2021-01
dc.identifier.citation
Gaia Amorós, Jeremías; Orosco, Eugenio Conrado; Soria, Carlos Miguel; Wearable Full-Body Inertial Measurement with Task Classification Using Deep Learning; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 19; 1; 1-2021; 115-123
dc.identifier.issn
1548-0992
dc.identifier.uri
http://hdl.handle.net/11336/183582
dc.description.abstract
In this work, an embedded system is developed for the non-invasive sensing and storage of biomechanical variables of people. It takes advantage of wearable technology, distributing sensors in strategic points of the body, ergonomically and functionally. The results are verified by recording and analysing tasks performed by six subjects to form a database. These tasks include being stood up, sitting down or standing up from a chair, going upstairs and downstairs and walking. Additionally, a convolutional neural network is tested for offline task classification. This work aims to initiate a process that ends in assistance-oriented applications, for the development of better injury rehabilitation techniques and support for elder people, among others. In this way, it seeks to open a path towards an improvement in the living conditions of people with and without reduced activities of daily living capacity.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DEEP LEARNING
dc.subject
EMBEDDED SYSTEMS
dc.subject
INERTIAL MEASUREMENT
dc.subject
NON-INVASIVE SENSING
dc.subject.classification
Ingeniería Eléctrica y Electrónica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Wearable Full-Body Inertial Measurement with Task Classification Using Deep Learning
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2022-09-21T11:55:17Z
dc.journal.volume
19
dc.journal.number
1
dc.journal.pagination
115-123
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Gaia Amorós, Jeremías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Orosco, Eugenio Conrado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.description.fil
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
dc.journal.title
IEEE Latin America Transactions
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/abstract/document/9423854
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TLA.2021.9423854
Archivos asociados