Mostrar el registro sencillo del ítem

dc.contributor.author
Gaia Amorós, Jeremías  
dc.contributor.author
Orosco, Eugenio Conrado  
dc.contributor.author
Soria, Carlos Miguel  
dc.date.available
2023-01-05T17:58:56Z  
dc.date.issued
2021-01  
dc.identifier.citation
Gaia Amorós, Jeremías; Orosco, Eugenio Conrado; Soria, Carlos Miguel; Wearable Full-Body Inertial Measurement with Task Classification Using Deep Learning; Institute of Electrical and Electronics Engineers; IEEE Latin America Transactions; 19; 1; 1-2021; 115-123  
dc.identifier.issn
1548-0992  
dc.identifier.uri
http://hdl.handle.net/11336/183582  
dc.description.abstract
In this work, an embedded system is developed for the non-invasive sensing and storage of biomechanical variables of people. It takes advantage of wearable technology, distributing sensors in strategic points of the body, ergonomically and functionally. The results are verified by recording and analysing tasks performed by six subjects to form a database. These tasks include being stood up, sitting down or standing up from a chair, going upstairs and downstairs and walking. Additionally, a convolutional neural network is tested for offline task classification. This work aims to initiate a process that ends in assistance-oriented applications, for the development of better injury rehabilitation techniques and support for elder people, among others. In this way, it seeks to open a path towards an improvement in the living conditions of people with and without reduced activities of daily living capacity.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DEEP LEARNING  
dc.subject
EMBEDDED SYSTEMS  
dc.subject
INERTIAL MEASUREMENT  
dc.subject
NON-INVASIVE SENSING  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Wearable Full-Body Inertial Measurement with Task Classification Using Deep Learning  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-09-21T11:55:17Z  
dc.journal.volume
19  
dc.journal.number
1  
dc.journal.pagination
115-123  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Gaia Amorós, Jeremías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Orosco, Eugenio Conrado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.journal.title
IEEE Latin America Transactions  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/abstract/document/9423854  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TLA.2021.9423854