Mostrar el registro sencillo del ítem

dc.contributor.author
Nielsen, Morten  
dc.contributor.author
Andreatta, Massimo  
dc.date.available
2022-12-15T18:18:53Z  
dc.date.issued
2016-03  
dc.identifier.citation
Nielsen, Morten; Andreatta, Massimo; NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length data sets; BioMed Central; Genome Medicine; 8; 33; 3-2016; 1-9  
dc.identifier.issn
1756-994X  
dc.identifier.uri
http://hdl.handle.net/11336/181399  
dc.description.abstract
Binding of peptides to MHC class I molecules (MHC-I) is essential for antigen presentation to cytotoxic T-cells.Here, we demonstrate how a simple alignment step allowing insertions and deletions in a pan-specific MHC-I binding machine-learning model enables combining information across both multiple MHC molecules and peptide lengths. This pan-allele/pan-length algorithm significantly outperforms state-of-the-art methods, and captures differences in the length profile of binders to different MHC molecules leading to increased accuracy for ligand identification. Using this model, we demonstrate that percentile ranks in contrast to affinity-based thresholds are optimal for ligand identification due to uniform sampling of the MHC space.We have developed a neural network-based machine-learning algorithm leveraging information across multiple receptor specificities and ligand length scales, and demonstrated how this approach significantly improves the accuracy for prediction of peptide binding and identification of MHC ligands. The method is available at www.​cbs.​dtu.​dk/​services/​NetMHCpan-3.​0.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
BioMed Central  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
MHC class I  
dc.subject
Binding prediction  
dc.subject
Insertions  
dc.subject
Deletions  
dc.subject
Gapped sequence alignment  
dc.subject
Epitope discovery  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length data sets  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2022-12-15T10:34:46Z  
dc.journal.volume
8  
dc.journal.number
33  
dc.journal.pagination
1-9  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina  
dc.description.fil
Fil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina  
dc.journal.title
Genome Medicine  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-016-0288-x  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/s13073-016-0288-x